Overview of Neutrino Factory Simulations

R.C. Fernow
BNL
NuFact03 Workshop

7 June 2003
What will be covered?

- neutrino factories (not superbeams or muon colliders)
- accelerator physics (not particle physics)
- “simulations”
 - go beyond Monte Carlo tracking ➔ computer system-designs
- but not hardware device designs
 - e.g. magnets, cavities, kickers, horns, …
- not demo experiments, e.g. MICE, targetry, …
- not theory
NuFact02 – Proton driver simulations

- AGS 1 MW upgrade study (Weng39*)
- transitionless lattice (Johnstone41)
- JHF (J-PARC) status (Machida40)
- 8 and 30 GeV lattices (Rees38)
- Japanese NF R&D (Mori44)

* superscripts give reference numbers in NuFact02 Machine WG summary

π distribution from 50 GeV J-PARC beam, 6 ns proton bunch, 6 m from target (Mori)
NuFact02 – Front end simulations

- μ collection in AG channel (Meot)
- 200-300 MHz phase rotation (Neuffer)
- CERN 88 MHz system (Hanke)
- magnetic chicane lattice (Pasternak)
- magnetic chicane lattice (Rees)
- dE/dx in hydrogen (Allison)
- quad linear precooler (Johnstone)
- ring coolers, RFOFO (Palmer)
- Balbekov tetra-ring (Kahn)
- pole face focused rings (Cline)

tools: Geant, ICOOL, Path, SYNCH, MAD, ZGOUBI, BeamOptics, Simucool, COSY

CERN funnel optics (doublet + ¼ wave transformer -> FODO)
Merges π beams from several targets to common decay channel (Meot)
NuFact02 – μ accelerator simulations

- recirculating linear accelerator (Bogacz)
- FFAG acceleration (Machida)
- phase rotation in PRISM FFAG (Sato)
- FFAG concepts & studies (Neuffer)
- FFAG with high frequency RF (Johnstone)
- ionization cooling with FFAG (Schonauer)
- fast ramping synchrotron (Summers)

tools: ACCSIM, SAD, DIMAD, Geant

Horizontal phase space,
10-20 GeV FFAG ring, 7 MHz RF,
multipole magnet model (Machida)
NuFact02 – New concepts

- frictional cooling channel (Galea30)
- beta-beam facility (Lindroos17)

Energy vs. time in bunch rotation stacking, decay ring is also accumulator, uses asymmetric bunch pair merging, small bunch embedded in dense region of larger one, new bunch off-momentum in high dispersion region, rotates quarter turn in phase space, use dual-harmonic RF, Steady state (left), injected and stacked bunches (middle), start of merging (right). (Lindroos)
π collection and decay channel for CERN NF

- 6D Monte Carlo simulations with ZGOUBI
 realistic quads, dipoles and solenoids
 tracking using symplectic Taylor series maps
 includes π decay
- developed theory of π / μ beam transport for checking
- work in progress
 analytic model of transverse phase space
 finite size of parent bunch

* blue names denote WG3 talks

ZGOUBI longitudinal phase space of μ bunch 40 m from target (Meot) *

MATHMATICA implementation of theory (Autin)
Adiabatic buncher and phase rotation

- idea (D. Neuffer et al)
 1. get E-t correlation from the drift
 2. adiabatically bunch with varying frequency RF
 3. 90° phase rotation
 vernier – slight variation in frequency
 4. match to cooling channel
- advantages over FS2 induction linac approach
 simpler and cheaper
 collects both μ charges
- present simulations give $0.22 \mu/p \sim FS2
Adiabatic buncher simulations

Neuffer-2D after drift

GEANT4 after bunching

SIMUCOOL after phase rotation

ICOOL after mismatched cooling
Adiabatic buncher plans

• look at variations
e.g. shorter bunch trains
• continue optimizing parameters
• design new matched cooling channel
 buncher emittance ~20 mm
 FS2 channel acceptance ~12 mm
Balbekov tetra cooling ring

- first successful 6D cooling ring
- hard edge field model
 “Balbecode”
 ICOOL
 Geant
- typical $M \sim 40 - 90$

$$M = \left(\frac{\varepsilon_{6\text{ initial}}}{\varepsilon_{6\text{ final}}} \right) \times \text{Tr}$$
Balbekov ring results

Balbecode 6D cooling

GEANT 1: no decay, 2: decay, 3: decay + 360 μm Al absorber window

ICOOL bunch sigmas
Balbekov ring problems and plans

- need realistic model of the fields
 - study hard-edge lattice with gaps (Kahn)
 - iteration from TOSCA fields
 - COSY non-linear maps (Makino)
- how to inject/extract with long cells
- MITER – automate GEANT RF tuning (Raja)

TOSCA field from short solenoid (Kahn)
“Quad” cooling rings

• conventional rings with quads or edge-focus dipoles (Kirk)
• approach so far
 SYNCH - basic lattice design
 ICOOL – tracking with hard-edge fields gives cooling performance
 COSY – explore effects of fringe fields

SYNCH dipole-only ring (Garren) ICOOL cooling simulation (Kirk)
“Quad” hard-edge ring summary

- hard-edge models give good M for variety of lattices
- compact 3.5 m circumference lattice for cooling demo?
- very low emittance using Li lens absorbers? (Fukui)
- needs windows & realistic field modeling
- limited acceptance with realistic apertures (ICOOL)
- limited acceptance with fringe fields (COSY)
Alternating solenoid focus rings

- pure solenoidal focusing
- bending from external dipole or tipped solenoids
- currently most realistic ring design
- simulated with ICOOL, Balbecode, GEANT

GEANT model of RFOFO ring (Mississippi)
RFOFO ring

- realistic fields from tipped solenoids
- $C = 33 \text{ m}$, $L_{\text{cell}} = 2.75 \text{ m}$
- 201 MHz, 12 MV/m, wedge = 100° LH$_2$
- $\beta_T = 38 \text{ cm}$, $D = 8 \text{ cm}$
- $M \sim 125$ (no windows, injection)

Vertical section through 3 cells (Palmer)

ICOOL emittances vs. length

Balbecode RFOFO closed orbits, radial (left), vertical (right), 10 MeV steps

7 June 2003

R. Fernow – NuFact03
Future ring cooler studies

- iterate with engineers
 practical window thickness (Cummings)
 practical absorber material and shape
 practical kicker design
- model injection/extraction (Palmer)
 field model
 modify lattice
- match with rest of system (Balbekov)
 bunch compression rings
- special applications
 early cooling
 low emittance cooling
 cooling demonstration
μ acceleration studies

• Recirculating Linear Accelerators (Bogacz)
 complete linear lattice design
 preaccelerator, linacs, 7 arcs
 \(\Delta \varepsilon_T \) growth in linac arcs is now small
• Very Rapid Cycling Synchrotron (VRCS)
 4-16 GeV preliminary design (Summers)
• Fixed Field Alternating Gradient (FFAG)

SYNCH design of VRCS lattice cell (Garren)

Improved FS2 RLA design (Bogacz)
FFAG designs

• lots of activity
• two main classes
 1. scaling (Machida)
 Japanese NF design
 complicated nonlinear magnet
 constant tune, closed orbit scales with E
 2. non-scaling
 more linear, large DA
 lower RF requirements
 examples (Palmer)
 FODO lattice (Johnstone)
 minimum emittance lattice

Closed orbit excursion during acceleration (Trbojevic)

tools: SYNCH, MAD, COSY, TEAPOT, PTC
Scaling FFAG, acceleration 10-20 GeV, 24 MHz, 0.75 MV/m average, 13 turns (Aiba)

- PTC tracking studies are ongoing (Machida)
- PTC = polymorphic tracking code
- checked with Runge-Kutta tracking
- soft-edge model (Enge function ends)
- studying focusing configurations & acceptances

PTC 150 MeV scaling FFAG, closed orbits vs. δ (Machida)
Other simulation work

- improvements in Monte Carlo techniques (van Ginneken)
 pathlength fluctuations in thick targets
 selection of ΔE & θ_{MS} via Edgeworth series
- MARS study of solenoid taper and π decay channel (Paul)
- linear quadrupole cooling channel (Berz)
 fully simulated with fringe fields in COSY
 matched to adiabatic buncher
- cooling ring at RAL (Rees)
- bunch compression rings (Balbekov)
- frictional cooling (Galea)
- cooling using gas absorber (Johnson)
- velocity-compliant bunching scheme (Iwashita)
- probably more, sorry
Neutrino factory simulation plans

- continue studying lower cost schemes
- continue topical workshops
 - collection and phase rotation (later this year?)
- monthly FFAG video conferences
- aim for new NF Study 3 in ~2 years