Atmospheric **n** in Super- Kamiokande-I and Accelerator **n** in K2K-I

For the Super-Kamiokande and K2K collaboration

Univ. of Tokyo, Kamioka Observatory <u>Masato Shiozawa</u>

Nufact03 @ NY

SK is back !

Full water on 10-Dec.-2002

Jan.-2003, fully contained event

Sep.-2002, before water filling

This talk

Neutrino oscillation study using full SK- I atmn data

- $v_{\mu} \leftrightarrow v_{\tau}$ two flavor oscillation analyses
- $v_e \leftrightarrow v_\mu \leftrightarrow v_\tau$ three flavor oscillation analyses
- Limit on $v_{\mu} \leftrightarrow v_s$ admixture

Neutrino oscillation study using full K2K- I data

- new detector and future prospects
- v_µ⇔v_τ two flavor oscillation analyses using total event rate and spectrum shape

Combined allowed regions

Nufact03 @ NY

t detection in atmospheric n

BG 461 events (CCne 43.1%, **CCn**m 24.5%, **NC 32.4%**)

zenith angle dist. of t-like events


```
N<sup>FC</sup><sub>τ</sub>= αN<sup>τ</sup><sub>MC</sub>/(eff.=0.44)
=145+-44(stat.)
+11/-16(sys.)
N<sub>exp</sub>=86
```

```
• consistent with \nu_{\mu} \leftrightarrow \nu_{\tau}
```

other two analysis give similar results:
*analysis-2(neural network) N^{FC}_τ=99+-39(stat.) +-13(Δm²) +0/-16(3-flavor) +0/-16(3-flavor)
*analysis-3(energy flow) N^{FC}_τ=135+47-44(stat.+sys.)

Allowed region for active 3-flavor oscillations

consistent with CHOOZ's excluded region

Limit on sterile n

analyses following to Fogli, Lisi, Marrone (PRD63,053008)

simplifies to 3 parameters; Dm²(atm), sin²2q, sin²x

 $n_m \rightarrow cosxn_t + sinxn_s$

sin²x=0; pure $\mathbf{n}_{\mathbf{m}} \rightarrow \mathbf{n}_{\mathbf{t}}$ sin²x=1; pure $\mathbf{n}_{\mathbf{m}} \rightarrow \mathbf{n}_{\mathbf{s}}$

nonzero sin²x

- oscillation suppression happens at multi-GeV region due to matter effect
- deficit of NC events in upward bins is expected

Nufact03 @ NY

limit on $\mathbf{n}_{\mathbf{m}} \leftrightarrow \mathbf{n}_{\mathbf{s}}$ add mixture

Summary of atmospheric **n** observations

Atmospheric neutrinos are measured using various techniques in SK- I and analyzed in detail

 $> n_m \leftrightarrow n_t 2$ flavor oscillations

- > all data are well fitted and agree with each other
- > $Dm^2 = 1.5 4x10^{-3} eV^2$, $sin^2 2q > 0.92$ @ 90%CL
- > observed t-like events also support $\mathbf{n}_{m} \leftrightarrow \mathbf{n}_{t}$
- $\mathbf{h}_{e} \leftrightarrow \mathbf{n}_{m} \leftrightarrow \mathbf{n}_{t}$ 3 flavor oscillations
 - > limit on \mathbf{q}_{13} consistent with CHOOZ
- sterile neutrino admixture
 - > **n**_s is disfavored as a prominent oscillation partner of **n**_m
 - ➢ sin²x < 0.19 @ 90%CL</p>

June-2003

Updated SK events in K2K-II

K2K-II experiment successfully observed SK events

Full installation this summer.

Improved Acceptance

- Increased acceptance at low energy
 - Important for the oscillation analysis
- Increased acceptance at large angle

Newly installed SciBar neutrino detector

A partial SciBar detector was installed in January 2003. The full installation will be conducted from July to September in 2003.

full active fine-grained detector \rightarrow precise measurements of **n** int.

- QE measurement by proton tagging and pion rejection
 - \rightarrow precise spectrum measurement
 - \rightarrow constraint on far/near ratio
- precise measurement of each int. modes (CC single-pion production, multi-pion, coherent pion, NC elastic, pi0, nue CC...)

June-2003

Null Oscillation Probability

Null Oscillation Probability

	analysis-1	analysis-2	
N _{sk} only	1.3%	0.7%	
Shape only	15.7%	14.3%	
N _{SK} +Shape	0.7%	0.4%	

Best fit (sin²2q, Dm²)

Shape only	(1.0,	3.0x10 ⁻³ eV ²)	(1.0 ,	3.2x10 ⁻³ eV ²)
(Allowing unphys.)	(1.09,	3.0x10 ⁻³ eV ²)	(1.05,	3.2x10 ⁻³ eV ²)
N _{sk} +Shape	(1.0,	2.8x10 ⁻³ eV ²)	(1.0 ,	2.7x10 ⁻³ eV ²)
(Allowing unphys.)	(1.03,	2.8x10 ⁻³ eV ²)	(1.05,	2.7x10 ⁻³ eV ²)

Both Shape and N_{SK} +Shape indicate consistent parameter region

Both indicate consistent **D**m² region

Summary of K2K

- K2K-II successfully resumed and new detector will improve knowledge of neutrino flux and interactions
- K2K Oscillation analysis on June99 ~July01 data
- 1. Null oscillation probability is less than 1%
- 2. Both SK rate reduction and E_{nu}^{rec} shape indicate consistent oscillation parameters region
- **3** $Dm^2=1.5\sim3.9x10^{-3}eV^2$ for $sin^22q=1$ @ 90%CL
- 4. Sin²2q, Dm² are consistent with atmospheric neutrino results

K2K will double the statistics (10²⁰ pot) in two years