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i Disclaimer

= Not comprehensive, surely biased, my view
of what is going on in the field.

» (Almost) not discussing:

= Oscillation physics with LA "ICARUS" like
detectors (will be covered by André Rubbia)

» Potential of Beta Beams (will be covered by
Jacques Bouchez)

= Super Beams proposals and potential (Dough
Michael)



i Outline

= Preliminaries

= Early research on neutrino oscilations at
NuFact, as told by Spires (1998-2000)

s Degeneracies, Correlations, Systematic
errors (2001,2002)

s Puzzling it out
» Combining two facilities to solve degeneracies
» Combining golden and silver channels

s Conclusions
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Preliminaries
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e KamLAND (2002):

Measures reactor neutrinos from a cluster of nuclear
(L} =0(175)km

plants around Kamioka

(E,(MeV)}/L(100km) ~ 10 eV?

| 4F F :
20k — ractor nentrinos
C mE geoneutrines
|2k # 15E O accidentals
10
i -1 &*' g — — — — — =
L5 R =
= | M % : o
g ﬂH_ 5 El!-llll TN T T N T T T T O O O A A
%ﬂ . 1L ; ﬁ 3_:,:_ 2.6 MV & KamlAND data
A ) : ¥ [ amialysiz threshold . —— pooscillation
o .6k % Savannsh River (W T - ' —— besi-fit oscillation
Z E Etwt}' ][ & 20F : cint28 = 1.0
ovno L s A= 69 x 107 gV
04 Goesgen il 15F
& Krasnoyarsk W -
O Pak Verde 10F i
0.2 B Chooz i
& KamLAND SE '+‘
00F l l | | of
L U [V A 1) 0 2 4 6 8

Reactor fluxes contain less 7, than expected and show the expected E /L
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Prompt Energy (MeV)

dependence: if confirmed first direct proof of oscillations!
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Early research on neutrino
oscillations at Nufact, as
told by Spires (1997-2000)



Neutrino Factory (re)invented
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Mentring Beams from Muon Storage Rings: Characte
and Physics Potential

5. Geer

Fermi Nattonal Aecelerator Laboratory
PO, Box 500, Batavia, Illineis 60510

Abstract

High-intensity high-energy neutring beams could be produced by expl
ill:.'_ A veEry intemse future muon soures, and allewing the muons to lll\'-ll_'.' i
slorage I'iII'_E (& -IIIJliII-Ill:_' a |-II|:_' 1-iII':|'I:_f|II seckion. '|-J||-:iII'_{ the parameters af m
sonree designs that are currently under study, the charactanistics of the neut
beams that could be produced are discnssed and some examples of their phy
potential given. It is shown that the neutrine and antimentring beam intens
may be sufficient to prodoce hundreds of charged carrent interactions per 3
in a detector on the lar side of the Earth.
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Figure 8: Contowrs of single-event sensitivity for eo-u, cseillations for 1 oyear of
running with the 4 wvalues of LJE specified on the figare, which correspond to the
4 detector confipurations summarized in Table 1. The hatcehed and eross-hatehed
areas show the expected tegioms that will be explored by respeetively the MINGS
experiment [10] after 2 years of ranning and the MiniBooNe experiment |11] afver 1
vear of rimning.




Wrong sign muons give access to full PNMS

matrix including CP

Nov 1998
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Mentrino oscillation physics with a neatrino factory

A De Ragjula®™!, MUB. Gavela®? and P. Herndndez™?

* Theory Division, CERN, 1211 Geneva 23, Switzerland
e Dept. de Fisica Tedrica, Univ. Autdnoma de Madrid, Spain

Abstract

Data from atmospheric and salar nentrines indicate that there are at least three nee
tring iypes invelved in cseillation phenomena.  Even il the corresponding neuiring
mass =eales are very dilferent, the inevitable reference toomixing betwesn mors than
twex neutring types has profound conssquences on the planning of the aceelerator ¢
periments sngeested by these results. We discass the measurement of mixing angles
and CF phases in the contaxt of the neutring beam emanating from a neairino factory:
the straight sections of a muon storage ring. 'We emphasize the importance of charge
identification. The appearance of wrong sign muons in a long baseline sxperiment. may
provide a powerful test of neatrine cscillations in the mass-differanes range indicatad
by atmospheric-neniring ohservations.,
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ribe |I w7/ 2] over its statistical ervor. The upper two curves are vacunm
the same CP phase(s).
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CP violation in 3 and 4 families
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Neutrino mixing and CP-violation

AL Donini™!, M.B. Cavela™?, P. Herndndez" and 5. Rigolin®?

AT = ATEAAT
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Abstract Figure 10: CF wolation asymmetvy in the ve — vy, (Teft) and v, — v (right) channel

far B, =20 GeV, angles and mass diffevences as in Sei 2 and for different choiee of

The prospects ol measuring the leptonic angles and CP-cdd phases at a neutrino the CP phases: d) = dy = 8y = 72 (full line), {dashed line) and 7/12 (dotied

factory are discussed in two scenarics: 1) three active neutrinos as indicated by line). We cons

lev i 1 kTon detector from the soure of a 2 3 109 muen/year beam.

the present ensemble of atmospheric plus solar data; 2) three active plus one
sterile nentring when the LSND signal 1= also taken inta aceount. For the latter
we develop cne and two mass dominance approximations, The appearance of
wrong sign muens in long baseline experiments and tau leptons in short baseline
ones provides the best tests of CP-violation in scenarice 1) and 2), respectively,



ep 1999

S

17

1
]

08 v

73
i

arXiv:hep-ph/990

CP Violation in 3 and 4 families.
Depencency with 0,5

TUM-HEP-345/09

SFB &
MPL-PWT joan7
OUTP-29-15P
April 1999

CP-Violation in Neutrino Oscillations®

K. DIck®", M. FREUND®, M. LINDNER! AND A. ROMANINO®

o-cd fnstitul fiir Theorvelisehe Physik, Technische Universitit Minchen,
James-Franek-Strisse, D-85% 8 Gawhing, G ermang

" Mar-Planck-Institat fir Physik, Postfach j01212, D-80805 Minchen, Germany

*Department of Physics, Theoretical Physics, University of Ovford,
Orford OX13NP, UK

Abstract

We study in a quantitative way CPoviolating effects in neutrino cecillation experiments in
the light of current and futwre dava. Different scenarios with three and four neutrinos are
warked ot in devail including matter effeets in long baseline experiments and it is shown
that in some cases CPoviolating effocts could affeet the analysis of a possible measurement,
In particular in the three noutring case we find that cthe effects can be larger chan expected,
at least in lmg-haseline v, — . Mareover, measuring these effects could give useful
information on the solar ceeillation frequency, In four neatring scenarics large effocts are
possible both inothe g — 1 and #y — pe channels of long-baseline experiments, whereas
short-basaline experiments are affectod only marginally.
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Sign of Am?, precision measurement of
atmospheric parameters
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Long-Baseline Study of the Leading Neutrino Oscillation
at a Neutrino Factory
V. Barger!, 8. Geer?, R. Raja®, and K. Whisnant? a.3s
' Department of Ph e, University of Wisconsin, Madizon, W1 53706, USA
2 Fermi National Accelerator Laboratory, P.O. Bor 500, Batavia, IL 60510, US.
A Department of Physics and Astronomy, lowa State Upiversity, Ames, TA 50011,
0.3
Abstract
0.5
Within the frameworle of three-flavor neutring oscillations, we consider the
physics potential of v, — 1, appearance and 1, — v, survival measurements
at a neutring factory for a leading oscillation seale dm* ~ 35 = 10— V2, ) |
Evenl rates are evaluated versus baseline and stored muon energy, and opti- 0.2
mal values discussed. Ower a sizeable reglon of cecillation parameter spae, 0.8 DB 1 1.2
matter effects would enshle the sign of dm? to be determined from a com- .
parizson of 1, — 1y, with 5, — Fy event rates and energy distributions. It is 3“122"#“

impaortant, therefore, that both positive and pegative muons can be stored in
the ring. Measurements of the v, —
the mag
of Of1%

vy, survival spectrum could determine
itude of #m? and the leading oscillation amplitude with a precision

FIG. 13, Fit to muon neotring survival distribution for &y = 30 GeV oand L = 2500 km for
10 pairs of sin“24, §m= values. For each fit, the 1o, 20 and 37 contours are shown, The generated
points are indicated by the dark rectangles and the fitbed values by stars. The Superk 685, 500,
and 95% confidence levels are superimposad. Each point iz labelled by the predicted number of
signal events for that paint.
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The precigion and discovery potential of a neutrine factory bassd an muan Hu a
storage rings is studied. For three-Tamily neutring ascillations, we analyse ho = =
y measure or severely constraimt the angle 85, CF violation, MSW eff £ o M
the ol the nospherie mass differen b We present a simple N :_ 1] :_
Iytical Formula For the « ation probabilities in matter, with all nentring mass E E
differences non-vanishi L] E i} -
the unknown parameters. The appearancs muens” at three rel- = F =
erence basolines i cansidered: 732 km, 5 232 km. We explait the e o e ey T
dependence af the signal on the neutrine nd melude as well realistic = 74 THA H HI Ri g TH TH ] iR B4
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1 km). Analyses combining the information from different hase-




Physics potential

I Aug 2000

arXiv:hep-ex/0008064 v2 3

FERMILAB-FN-G92
December 11, 2001

Physics at a Neutrino Factory
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Figure 1: Predicted ratios of 7. — 5, to o — 1y, rates at a 20 GeV neutrino
factory. The upper {lower) band is for dmg, < 0 (dmd, = 0). The range of
pessible CP violation determines the widths of the bands. The statistical error
shown eorresponds to 10% muon decays of each sign and a 50 kt detectar. Results

are from Ref. 51.
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Figure II: The required number of muon decays needed in a neutrino factory to

observe v, — b, oscillations in & 50 kt detector and determine the

an of sm?,

and the number of decavs needed to observe v — e oseillations in a few kt
detector, and ultimately put stringent limits on (or of
lepton sector with a 50 kt dotector. Results are from Ref. 51.

sorve) CP violation in the



Degeneracies, correlations,
systematic errors. Super
Beams vs Nufact
(2001,2002)
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Golden measurements at a neutrino factory
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(0-’13? ) ) are fake solutions of:

5
1=

(63,6 ) = By, (613,9)
(63,0 ) = Py 5,(6h3,0)

T

at fixed E,and .

ol T

They appear when the full parameier is considered and the energy dependence of the

signal {incuding realistic backgrounds and efliciencies) is not strong enough.

In fact, 3 sources of degeneracies

Intrinsic — P(f,,,0 ) = P(013,0)
(J. Burguet-Castell, et al, Mucl. Phys. B608, (2001))

fs- Octant = P(613,8 , F — fa3) = P(bh13,0)

(G.L. Fogliand E. Lisi, Phys. Rev. D54 (1996); V. Barger ef al, Phys. Rev. D65 (2002).)

Sign-ﬂm:fﬂ —r ..!Dlilf(fillg~ f'gr, .-'i"‘..'”lf;;} = P{f‘:"m, Eﬂ

(H. Minakata and H. Nunokawa, JHEF 0110 (2001); V. Barger ef al, Phys. Rev. D65 (2002).)
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On the measurement of leptonic CP violation

1. Burguet Castell, M.B, Gavela®!, 1.1, Gamez Cadenas®? | P, Hernindez™3 0. Menab+ I nT r' |' ns i C D egener.acy

" Dept. de Fisiea Atdmiea y Nuelear and 1F1C, Universidad de Valeneia, Spain
U Pept. de Fisica Tedrica, Univ. Auténoma de Madrid, 28019 Spain

“CERN, 1211 Geneva 23, Switzerland

Abstract

We show that the simultaneons determination of the leptonic CP-odd phase & and —
angle &1 from the subleading transitions v — vy, and 2, — g, results gene
fized nentring energy and basaline, in two degenerate solutions, In light of this, we |t\hnr'
L PIeVious A, il the sansitivity to leptonic CF violation at a neatring actory, in the
LM A-MSW ‘-tt\lnllll by axploring the fll rangs of & and #3. Farthermors, we take into
arconnt the expeeted uneertainties cn the solar and atmospherie aseillation parameters

average Earth mattar dansity g the nentring path, An intermediate base

L] [ ] L]
i 003 bom s still the bast option 1ot 1-:k|r' CP viclation, although a combination ‘ O b | l T O bas e I es
al two basalines turns ant to be very impartant in resclving degenaracios.
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Figure 4: Simolloreows fils of § and 85 al L = 2810 b for differend contral values (indicated
Figure 10 Fits of & and #5 combining the boe baselines: 2810 b and 7232 km, for various -I.l_i.l the st I'JI"J'S__,I I'.U- ] —00e e, a0e 1800 aned ﬂl:i 2 fllf_ff_n'. bl |"i"|i_|:,'ll.'I')|. The value I'.l__l. a _|r-:?'i" fhie

;‘Ir.'l’.lhm' values of & and #13 including all the ervors on the vemaiming parameters with AA JA de qenete soludiona is also s cmted.
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Exploring Neutrino Mixing with Low
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same gigns of Amfy as above but with matter effeet switched off. The mixing parame
are fixed as Amiy = £3 =10 3 gW?, gin® 2693 = 1.0, Amfy = Hx 10 5 aW2 sind 20s
sm® 2y — 005 We take p¥, 1.4 '_'_..'I'Ill:s' where p is the matter density and Y, is
electron fraction,
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We identily three independent two-fold parameter degeneracies (5, 83,
sgnfdmd; ) and (g, 7/2 — fg) inherent in the vsual three-—neutring analy-
s1= al long-baseline neutring experiments, which can lead to as much as an
|‘i'_[||l lialed IIl"_','l'IIl'I'JI('_'.' m the determination of the cscillation parameaiars. We
discuss the impheations these degeneracies have for detecting CF viclation
and present eriteria for breaking them. A superbeam Facility with a baseline
al least as long as the distance between Fermilab and Homestake (1290 km)
and a narrow band beam with energy tuned so that the measurements are per-
formed at the first aseillation peak can resolve all the ambiguities other than
— thga) ambignity (which can be resolved at a neutrine factory |
and a residual (4,7 — 4] ambiguity. However, whether or not OF viclation

oecurs in the nentrime sector can be ascertained independently of the latter

twer ambiguities. The (6,7 — 4) ambiguity can be eliminated by perlorming

a second measurement to which only the cosd terms contribute, The hier-

archy of mass eigenstates can be determined at other cecillation peaks only

in the most optimistic conditions, making it necessary to use the frst oseilla-

tion maximum. We show that the degeneracies may severely sompromise the

ability of the propossd Super]HF-Hy perKamickande experiment to establish

1 vialation. In cur ealenlations we use approximate analytic expressions for

a=cillation |]|'lJll'I|li|i|i|("_H i hat agree with numerical solutions with a realistic

Farth density profile.
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FIG, 10, Examples of the three types of ambigmties for the proposed SuperdHF-Hyperk ex-

periment [16] with L

sin” 203

0.5, unless othe

A00 lkm and 1

guity, and (] (0, 7/2 — #3) ambiguity. In each case dmi,

0.7 GV da) (4,31 ambiguity, (b)Y sgnidmd; ) ambi-
w10 b el?, hillﬂﬂﬂg:: 1, and

se stated in the fgure, The circle i (B) indieates the size of the

expectad experimental uncertainties [16].
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Abstract

We compare the physics potential of planned superbeams with the one of neutrino factorjes,
Therefore, the experimental setups as well as the most relevant uneertainties and errors
are eonsidered on the same footing a3 mueh as possible, We tse an improved analysis in-
cluding the full parameter correlations, as woll as statistical, svstematical, and degeneracy
errors, Especially, degeneracies have so far not been taken into account in a numerical
analvsis, We furthermore inelude external input, such as improved knowledge of the salar
ascillation parameters from the KamLAND experiment. This allows us to determine the
liniting umeertaintics in all cases, For a specific comparison, we choose two topresentatives
af each elass: For the superbeam, we take the first coneeivable setup, namely the JHE
1o Superkamiokande experiment, as well as, on a longer vime seale, the JHF to Hyper-
Famiokande experiment. For the newtrino factory, we choose an initially conceivable setup
and an advanced machine. We determine the potential to measure the small mixing angle
sin® 25, the sign of Amg, and the leptonic CP phase dop, which also implies that we com-
pare the limitations of the different setups. We find interesting resuli=, such as che eomplete
loss of the sensitivity to the sign of Amg, due to degeneracies in many cases.

JHE-HK NuFaet-II
1 - L
. .. el
Dot |
Ce
B B a7y
L
. 1.3 - T
! * }' s
) f s 0004
| E
\ -
s e T ¥ 0.0a3
a a2 E o a2 T
AT o

Figure 7: The 37 comtours of the y*-function, which is plotted as function of dcp and
sin 28y for the JHF-HK {left-hand plot) and NuFace-l (right-hand plot) experiments.
The golid curves refer to the original solution at the best—fit poing, the dashed curves to the
degeneniey in (o — ths), and the the dotted curve to the degenemey in sgnf Amg, ).
The diamonds mark the local minima with the respective 2 -values, The amvows on the
lefe-hand sides of the plots illustmie the measurement evver in sin® 201 from statistieal,
systematical, external, and correlational sources, ag we had it at the end of Section 3. The
arrowe on the right-hand sideg of the plots mank the overall error, ag we would have it for
taking the whole mnge coverad by degenemetes, given by the gmy-shaded region, For the
oscillation pammeters, we choose the LMA solution with Ami, = 4.5. 107" eV, sin® 261
1.0, sin® 203 = 001, dop = 74, and sin® 2y — 7/4 — 0.2,
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Abstract

The measurement of the mixing angle Mz, sign of Ami; and the CF ar T
violating phase & is [raught with ambiguities in neuinine escillation. In the
paper we give an analytic treatment of the paramater degenemcies associated
with measuring the sy, — v, probabibiy and its CF and/or T conjugates. For
CP violation, we :.[i‘.‘(" l.'.\'|:l|il'i| salutions to allow us to obtan the I'I"".[.IIJIH where
thera exist two-Told and Four-fold degeneracies. We ealeulate the Fractional
differences, (A}, between the allowed solutions which may be used to
compare with the expact el sensitivities of the l.'.‘-:|Jl.'I"II|||:‘||| s For T violation
wer show that there is always a complete degeneracy between solutions with
positive and negative dmfy which arises doe to a symmetry and cannot he

removed by observing ane nentring ascillation probabilityand s T conjugate.

FIGURES
L =130 km, E = 250 MeV

4;0 [ T T T T ‘l', T T
F [ positive sign solution s
35 [ [ " Thegative sign solution  # ]
L mixed sign solution I!ﬁ’—h-.__
[ Al 1
30 F s -]
r _ . ™ -
[ no solution
—~ 25 ¢
5 [
— -
=~ [
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% X
1.5 |
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r !
C s o
1.0 F no solution 4
L CP+, sin22f],;=ﬂ.055[upper]
05 CP+, sini?f],;=ﬂ.05[lower] b
———- CP-, sin 28, = 00586 (upper)
———- CP-, sin"20,, = 0.0472 (lower)
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FIG. 1. An example of the degenerate solutions For the CERN-Frajius project in the
Pir) = Plyy, — v} verses CP[Pr)] = P, — i) plane. Between the solid {dashed) lines

i5 the allowed region [or positive [negative) -_".mf:; and the shaded region 1= where salution for

both signs are allowed. The solid {dashed) ellipses are for positive (negative] Sontfy and they all

mest at & single point. This is the CF parameter degeneracy problem. We have used a fixed

neutrimes energy of 230 MeV oand a baseline of 130 km. The mixing parameters are fixed to be
2 ; 370 o2 Ao . Bl 39 . - .

| Aty = A s 107617, gin® 2ogg 1.0, Amty F6 s 1077l =in® 28 = 0.8 and Yop 1.5 g

am
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Abstract - G = : -
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Using A= which is defined by the difference of the number of events with - - -
- - £
the CF phase d and the hypothetical one with & = 0, we discuss cormalations - s am
al errors of the CF phase and other oscillation parameters as well as the e T T I e T T T T
matter effect in measurements at nentrine factaries. By varying the aseillation e e e
paramelers and the normalization of the matter eflect, we evaluated the data LeeS0EmgE Sacey m L=6300km E,=20GeV 1= = m E,=50Ge "
size required to reject a hypothesis with 4 = 0 at 32CL, The sptimum mucn = = = =
energy and the baseline depends an the magnitude of #y5, the backgronnd . . @ “
fraction, the uncertainty of the normalization of the matter efect, but in ' . B
general lie in the ranges 200V 5 £, = a0GeV, 1000km= L Za000kmn. If - * :
we assume that the uncertainty of the matter effect 1= as large as 20% then ” - ™
the aptimum values may be modified to £, 510GV, L S1000km due e L2 T T T

B3 B1a

Fig.2

the strong correlation of 4 and the matter effect. We show analytically that
sensitivity 1o CF violation is lost for f'.lu = 10GeV ar Tor f'.'.u = G0GeY. YWe
al=a discuss the possibility of measuring CF viclation at the upgraded JHE

68%CL ———
90%CL = = -
99%CL =====

l"!C|.ll"I'iIIIl.'II| |l.'.' taking all the ervor corvelations into account, and show that it

i= |:u_p-.'»-:'|||||,- to demenstrate 4 £ 0 at 30 CL far s ﬂ: 3=,

1315 4o G0 Pa. 2340 Bw. 26,6541
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Solving intrinsic degeneracy combining two
facilities
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Hufack (2810 ki) + Super Beame {130 km}
160 J
50
‘ ©
-m
e N
—15a
1 1 Lo iR 1 1
) 7 ™ 2 ] 95 L]
")
=
15¢ Super Beamns (130 km)
i
=
50 [
el 0"@
C PR i o by o IR
3 BS 7 75 & BS F]

Combination

—

[

o
120

d— of SB+NF

Hufoct (2810 kn) + Super Beme {130 km)

Intrinsic degeneracy

\SB alone

4 Jul 2002

Superbeams plus Neutrino Factory: the golden path to
leptonic CP violation
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Solving sign Degeneracy
combining two facilities
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Solving 6,5 Degeneracy combining two

facilities
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Solving Degeneracies at
Nufact combining golden
and silver channels

The silver channel at the Neutrino Factory
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(’l’hc: Golden Channel at the Neutrino Factory ]

et

L6t ] %

Ve =+ Uy —v i~

The oscillation probability is

PE = X sin®(20,3)

&aEmL

+Y.i cos (5 F ) cosfy3sin(20,3)

+Z +...

X:I: = ""l;:itrn x f_'.!i{ {HH?A?L}
Y:I: - "ﬁmxn * "ﬁut'm * f}:'l': {9121'9231“41‘ L}
Z = AL, X [z(012,023,4,L)

(+ neutrinos, — antineutrinos)
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[Thc: Silver Channel at the Neutrino Factory ]

et

[+ 5

Ve =r Uy =T =~

The oscillation probability is

PE = X7 sin®(2613)

&aEmL

~Y, cos (5 F

+Z7 + ...

) C()Sﬂlgﬁjll{zglg}

with

&ﬁfﬂl b {E%SIS%B}fJi{ {923744? L}
-"'l.-;un x -&ut*m x f}:k {91279231A7L}
'&Eun x {Sgﬁjﬂgﬁ}fz {9121-9237*471"}

XI =
Yi =
zZT =

(+ neutrinos, — antineutrinos)

~




XXXVIII RENCONTRES DE MORIOND - March 20th, 2003

12

/‘

[ Equal-Number-of-Events Curves ]

The number of GOLDEN muon events is:

Ni-(013,0) = {ov, ® PL(015,0) ® &} "
with ¢ a given energy bin.
By changing (f,3,4) accordingly,
we draw ENE curves in the (0,3, 4) plane:
hr;t'[glﬁ'-ﬁ} = hrfl:{ﬂﬂ'-ﬁ}
L = 3000 Km
200 -
100
§13 - 5U ] a
5 = 90
100
_Em—ﬂﬂ ﬂ aa 18

~
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[- Comparison of ENE curves )

Baseline: I = 732 Km
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The Emulsion Cloud Chamber (ECC)

1 mm
= Emulsions for tracking, passive material as
’rargem < um space res. L mass T
erteeens [
» Established technique
= charmed "X-particle” first observed Pb
in cosmic rays (1971)
Emulsion layers
= DONUT/FNAL beam-dump experiment: 7v_ ]
observed (2000) track segments
Am?>=0 (107 eV?) — M~ 2kton

modular structure ("bricks"): basic performance is preserved
large detector — sensitivity, complexity
required: “industrial” emulsions, fast automatic scanning



Signal & background vs E,
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[Rmults for golden muons at L = 3000 I{m_]

Five years of data taking: one polarity only
(" in the storage ring)

Bl

T
-a.!

Ten years of data taking: two polarities
(" and p~ in the storage ring)
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et \
aa 5] /__'Q}f;?u "clone"
TN
a best fit paint
~a =, w o
] -0
-184d & =
— 130 " -
- : o i ]
e

\I_uput parameters: 0,5 = 1°.4 = 90°
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[ Using golden and silver muons ]

Setup A: two iron detectors and two baselines
(zolden muons only)

180 - . Fal Ty 1m0 .
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Setup B: one iron and one emulsion detectors
(golden and silver muons; IDEAL emulsion detector)

180 - o 1=,
a0 | 50 ’,ﬂr
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Neutrino Oscillations and their Origin - February 11th, 2003
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[ Solving the [f23, m/2 — 23] ambiguity ]

We can analytically compute the location of the
intrinsic clones.

Shift in A# for golden, and superheam.

faq = 40° flaq = 50"
Shift in 4 for golden, and superbeam.

-mj R R | - |
0.1 L w oL L
e a

fag = A0° faq = 50°

Input parameters: 8,5 € [0.01°,10°], 4 = 90°

N

11

~
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[ Solving the [f23,7/2 — O23] ambiguity (2) ]

We can plot how the intrinsic elones moves for
changing 03 in the Af,4 plane

(input,golden, and superbeam)
(1] /n wma I|' -
= R0 : =':|,. w W
|I . =
'| = TR
o ] (] L ] 1 : i oy i ] E]
- =
faz = 40° flag = 50°

Input parameters: #y5 € [0.01°,10°],4 = 90°

Notice that for fag — 7/2 — @z golden and
clone trajectories interchange: they have opposite 4.

I

For large enough statistics (i.e. not too small 8,5)
we can solve the ambiguity combining golden and
silver signals.

- /




i Conclusions

» The Good News: God has chosen LMA.
Clearly she means us to measure the PMNS
matrix parameters.

» The Bad News: Those measurement are
difficult both intrinsically (correlations,
degeneracies) and experimentally (powerful
new facilities needed).



i Conclusions (IT)

s The Bad News: Technological and economical
restrictions may delay the neutrino factory more
than we would like.

= The Good News: Super-Beam and Beta Beam

facilities may be operational earlier. They are
SYNERGETIC to NUFACT.

= The combination of two or more facilities, two
baselines, and precious (golden & silver) sub
leading transitions will eventually unlock Pandora’s
box for us. Then, loo and behold!
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