NuFact 03 WG1 Summary

Future Experiments

• G. Feldman

• R. Bernstein

K. Kodama

• Y. Obayashi

• J. Burguet-Castell

• S. Kahn

Y. Efremenko

Progress report from NUMI off-axis

Independent study of NUMI off-axis sensitivity

Progress report on CNGS and Opera/Icarus

JHF progress report and θ_{13} sensitivity

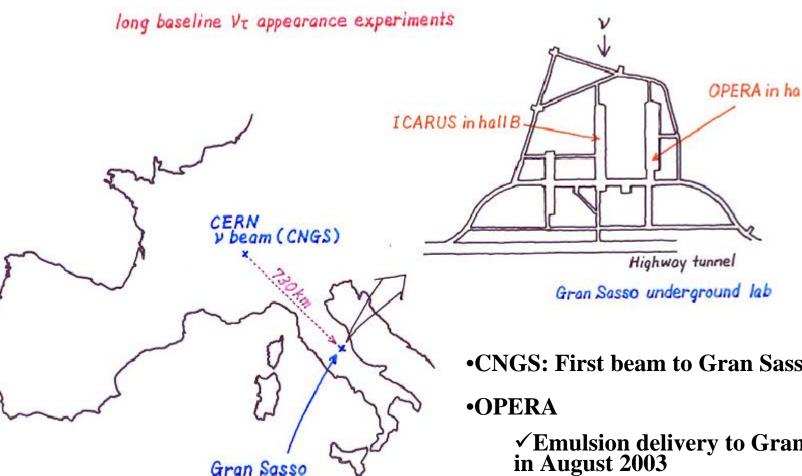
JHF intermediate detector

BNL/Homestake proposal

G. Rajasekaran A large iron detector for the neutrino factory

A long-baseline experiment in the IHEP tunnel

NuFact 03 WG1 Summary


Future Experiments

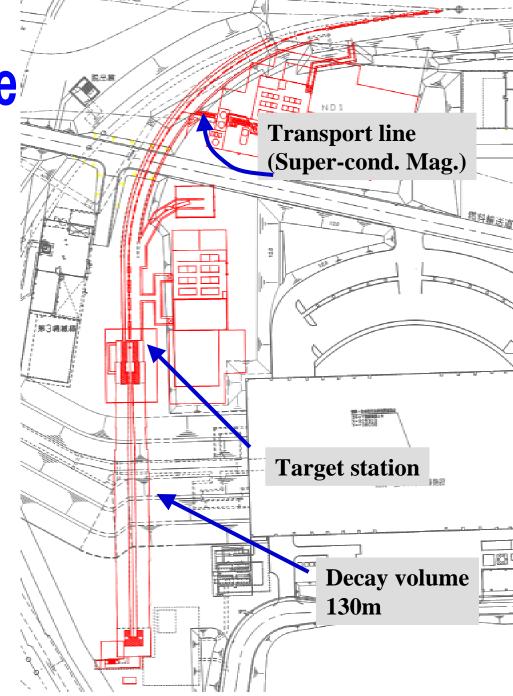
- LBL; approved, ongoing
 - ✓ K. Kodama Progress report on CNGS and Opera(/Icarus)
- LBL; proposed, realistically studied
 - \checkmark Y. Obayashi JHF progress report and θ_{13} sensitivity
 - ✓ J. Burguet
 JHF intermediate detector

Castell

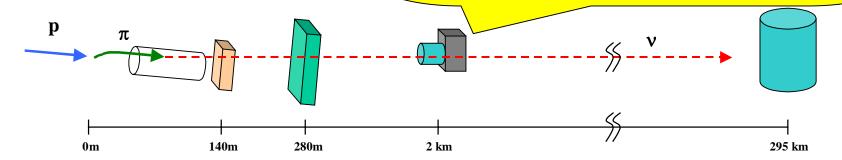
- ✓ G. Feldman Progress report from NUMI off-axis
- ✓ R. Bernstein Independent study of NUMI off-axis sensitivity
- VLBL; conventional beam
 - ✓ S. Kahn BNL/Homestake proposal
 - ✓ Y. Efremenko A long-baseline experiment in the IHEP tunnel
- VLBL; neutrino factory
 - ✓ G. Rajasekaran A large iron detector for the neutrino factory

CNGS, OPERA and ICARUS status

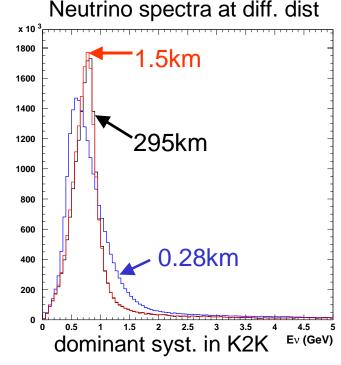
- •ICARUS (A. Rubbia, plenary talk)
 - **✓ T600 installation at CNGS has been** approved in March 2003.
 - **✓** Transported and installed in 2003-2004.
 - \checkmark T3000 = T600 + T1200 + T1200


- •CNGS: First beam to Gran Sasso: May, 2006
 - **✓** Emulsion delivery to Gran Sasso starts in August 2003
 - ✓ Run from Day 1
 - **✓** Emulsion analysis for event location must be ready before Day 1
 - ✓ Rehearsal for event location using "mini-OPERA" at KEK-PS in 2004

JHF-Kamioka Neutrino Experiment


Neutrino Beamline

- Off-axis
- Design in progress.
- Budget request submitted.
- Will be ready to start construction in 2004.



Detectors

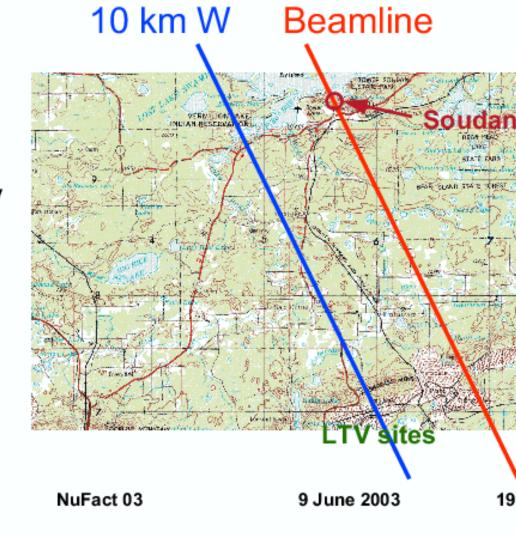
Role of the 2 km intermediate detector studied by Burguet-Castell: It will drastically simplify the systematic error analysis.

- Muon monitors @ ~140m
 - Fast (spill-by-spill) monitoring of beam direction/intensity
- First Near detector @280m
 - Neutrino intensity/spectrum/direction
- Second Near Detector @ ~2km
 - Almost same E_v spectrum as for SK
 - Water Cherenkov can work
- Realistic sensitivity studies and detector design studies started.

NuMI off-axis

G. Feldman

LTV Site 712 km


Former surface mining site, no longer used.

Large site, 25 by 5 miles.

There are some other longer baseline sites phone. up to ~950 km.

Road and rail access. Power, fiber, and cell

ary Feldman

Detector Technology Choice

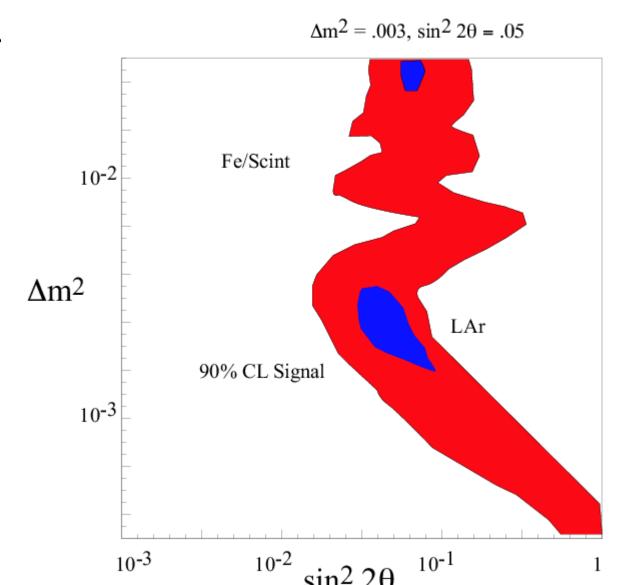
- Most troublesome backgrounds are asymmetric π^0 decays from NC and ν_μ CC events where the muon is not detected.
- H₂O Cerenkov detectors do not provide optimum rejection for E > 1 GeV.
- Best rejection is given by liquid argon detectors, but required R&D is not compatible with the envisioned time scale.
- Next best option is highly-segmented (~1/3 X₀) medium-Z sandwich detectors.

Active elements: scintillators or RPCs considered

Absorber: consensus to use particle board

NuMI off-axis

- •LOI submitted August 2002 (P929)
- •Intention to submit proposal to November 2003 PAC
- •50 kton, 5 yr, 4×10^{20} pot/yr



Timetable: Possible Longer Term Schedule

- June 2004: PAC approval for a near detector
- 2004-2006 Near detector construction and running and far detector engineering
- 2006 Start of far detector construction
- 2009 Start of full run
- Note: The beam will exist and the detector is modular. The experiment can start prior to full completion.

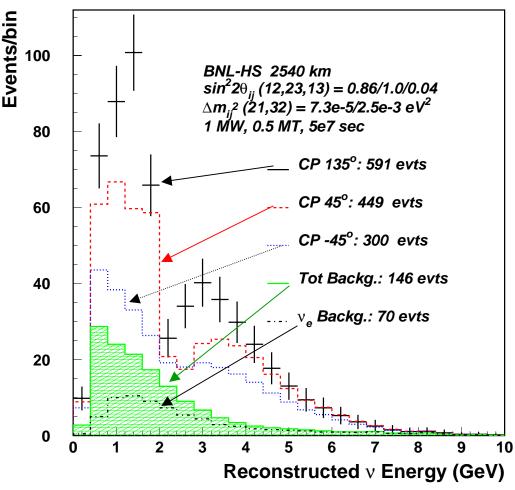
R. Bernstein

- •Simulation studies of NuMI off-axis
- •For v_e appearance, simulated LAr and Fe/Scint, 100 kt/yr.
- •Can see effects down to $\sin^2 2\theta = 0.01$.
- •LAr much better

WG1 Summary NuFact03, June 11, 2003

BNL → Homestake Super Neutrino Beam

S. Kahn

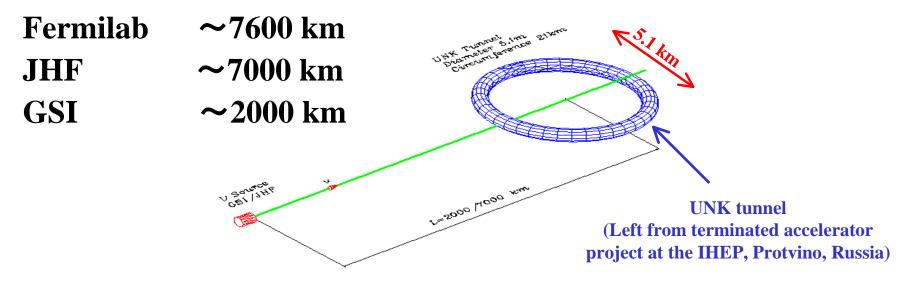

28 GeV protons, 1 MW beam power 500 kT Water Cherenkov detector 5 × 10⁷ sec of running, Conventional Horn based beam

WG1 Summary NuFact03, June 11, 2003

v_e Appearance Measurements

v_e APPEARANCE

WG1 Summary NuFact03, June 11, 2003


- a direct measurement of the appearance of ν_μ→ν_e is important; the VLB method competes well with any proposed super beam concept
- for values > 0.01, a measurement of $\sin^2 2\theta_{13}$ can be made (the current experimental limit is 0.12)
- for most of the possible range of sin²2θ₁₃, a good measurement of θ₁₃ and the CP-violation parameter δ_{CP} can be made by the VLB experimental method

DISCUSSION

- •1-ring QE event selection above a few GeV suffers from more BG.
- More realistic BG estimation suggested.

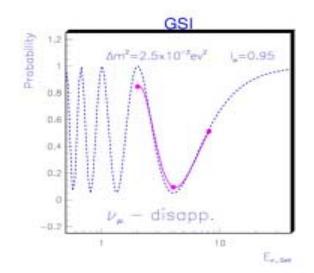
Y. Efremenko

Concept Measurement of v_{μ} disappearance with a very large baseline

- UNK tunnel huge scintillator based muon counter (not calorimeter !)
- Surrounding soil is a neutrino target
 ∼1 Mton
- TOF and segmentation gives direction to the neutrino source
- Location at 50 m underground gives good cosmic ray background suppression
- Energy scan with Narrow Band neutrino beam to see oscillation pattern

WG1 Summary NuFact03, June 11, 2003

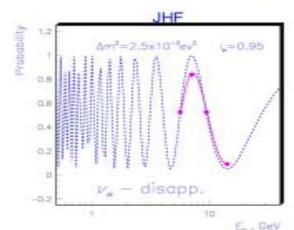
Expected Sensitivity


For Δm_{atm}^2 in the range of 1.5 10⁻³ ev² < Δm^2 < 4.0 10⁻³ ev²

Expected accuracy in parameters measurements

For GSI:
$$\sigma_{\Delta m^2} = 2.7 \cdot 10^{-5} \text{ ev}^2$$
, $\sigma_{\sin^2 2\theta} = 0.01$

For JHF:
$$\sigma_{Am^2} = 1.5 \cdot 10^{-5} \text{ ev}^2$$
, $\sigma_{Sin^2 2\theta} = 0.01$


This is ~1% error !!!

If we can do the same for antineutrinos say with 2% accuracy, then:

Test of CTP on the 3% level

by compare Δm^2 for neutrinos with Δm^2 for antineutrinos

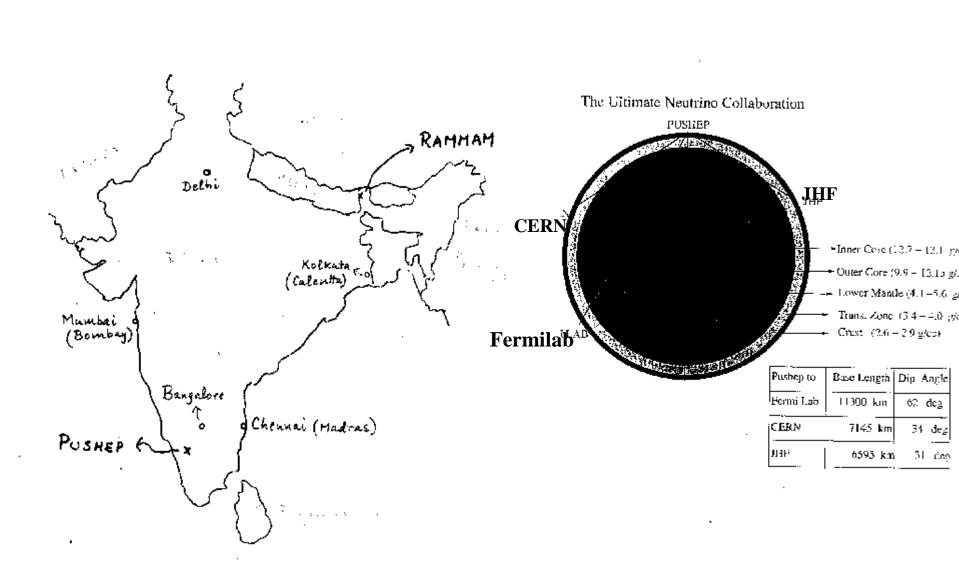
Sensitivity to matter effects on the 3% level

WG1 Summary For
$$\Delta \mu = \mathbf{P}(\nu_{\mu})$$
 -- $\mathbf{P}(\mathbf{anti-}\nu_{\mu})$ NuFact03, June 11, 2003

A large iron detector in India as a far end detector for a neutrino factory

Indian Neutrino Observatory (INC) and its role

in long-base-line experiments


(Talk at NuFact 03, New York, June 2003)

G. Raja sekaran Institute of Methematical Sciences, Chennai (Madras) India 0

Detector: 30 kt magnetized iron calorimeter

Phase 1: atmospheric neutrino measurements

Phase 2: far detector for a neutrino factory experiment

(F

("super-beam") LBL experiments

	E_p (GeV)	Power (MW)	Beam	$\langle E_{\nu} \rangle$ (GeV)	L (km)	M _{det} (kt)	ν _μ CC (/yr)	ν _e @peak
K2K	12	0.005	WB	1.3	250	22.5	~50	~1%
MINOS(LE)	120	0.41	WB	3.5	730	5.4	~2,500	1.2%
CNGS	400	0.3	WB	18	732	~2	~5,000	0.8%
JHF-SK	50	0.75	OA	0.7	295	22.5	~3,000	0.2%
JHF-HK	50	4	OA	0.7	295	1,000	~600,000	0.2%
OA-NuMI	120	0.4	OA	~2	730?	50kt?	~2,500?	0.5%
OA-NuMI2	120	1.2	OA	~2	730?	20kt?	~4,000?	0.5%
AGS→??	28	1.3	WB/O A	~1	2,500?	1,000?	~1,000?	
SPL-Furejus	2.2	4	WB	0.26	130	40(400)	650(0)	0.4%
OA-CNGS	400	0.3	OA	0.8	~1200	1,000?	~400	0.2%

T. Kobayashi, NuFact 02 (with modification for OA-NuMI)

Future Experiments: Summary

- CNGS: First beam May 2006
- OPERA: Preparing for Day 1
- ICARUS: T600 installation in Gran Sasso 2003 2004
- JHF: Ready to start construction in 2004
- NuMI off-axis: Detector choice advanced, Proposal November 2003
- BNL/Homestake: Realistic BG estimate suggested
- IHEP, INO detectors: New comers welcome, Realistic sensitivity studies encouraged