Proton Driver: halos, losses, bunching . . .

Target/Magnet:

Measuring the ioniz. of the water: *D. Bartels*

Damage to the Magnet Structure:

Cooling line:

Instrumentation Workshop

Y. Gohar

Philosophy

<u>Limited variables \Rightarrow minimal instrumentation set</u>

Profile - Required

Intensity - hard

Loss mon - very hard

Backgrounds – from timing

Alignment: \Leftarrow pencil beams, transfer fns (profile mon)

Time Resolution: very useful (and maybe cheap)

Tuneup and running instrumentation may be different. Techniques

Beam:

Scintillators, Faraday cups and SEMS,

Semiconductor Arrays (Placidi), and other options

Absorbers: Bolometers, Schlieren

Access: between SC coils, rf and coils

Possible Instrumentation Package

Required space, access

Concerns: rf pickup, beam backgrounds Accelerator:

TJNL

FNAL

Pencil beams, Transfer Functions, Loss mon **Storage Ring**:

We need a way move instrumentation around.

Concerns about cooling line instrumentation:

- Backgrounds should not be much of a problem. The intense ~10¹² bunch should dominate everything. Protons and ch. hadrons will be out of time. Dark currents and xrays will be weak & out of time.
- The muon cooling experiment should have produced reliable instrumentation.

Cooling experiment instrumentation will have weaker muon beams, worse signal /noise ratio, more problems with backgrounds

- Space and access are very limited.
 Available space very close to magnets and rf. How does B field affect things?
 Will the rf cause pickup at 200 MHz?
 ⇒ see results from Lab G
 Valves for vacuum interlock are big.
- The devices should be thin, but would be retracted anyway, during normal operaton.
- Beam heating will be significant and cooling will be required.

And we need techniques which are reliable and rad hard. We are going in this direction . . .

The r and dr measurements determine if the device is a Faraday cup or a SEM, the operation is similar.

- Stripline pickups can give 50 Ω impedance.
- Time response \sim size/(velocity of light) \sim 100 ps
- Beam current $\sim 10^{12}/1$ ns ~ 160 A
- Signal = $IR \sim 8000 V$ (as Faraday cup)
 - \sim (secondary em coeff) IR \sim 160 V (as SEMs)