

Neutrino Factory and Beta Beam

Experiments and Development

Design Group Summary

Michael S. Zisman CENTER FOR BEAM PHYSICS

Neutrino Factory and Beta Beam Working Group Meeting-ANL March 4, 2004

- Introduction
- Neutrino Factory ingredients
- Beta beam ingredients
- Progress and plans: Neutrino Factory
- Progress and plans: Beta Beams
- Possibilities for next meeting
- Summary

- For Neutrino Factory design and R&D, strong and active groups already exist
 - Neutrino Factory and Muon Collider Collaboration (U.S.)
 - European Neutrino Group (EU)
 - Japanese Neutrino Group (Japan)
- Our goal is to build on that work and document it for the broader U.S. neutrino-science community
 - progress toward a more cost-effective implementation is particularly important
- Work on beta beams centered at CERN
 - they are happy to work with us to provide information on what has been done and what remains to be done
- Our goals are to understand the CERN work, to evaluate the R&D program required to realize a beta beam facility, and to consider a possible U.S. implementation of such a machine

• Neutrino Factory comprises these sections

Neutrino Factory Ingredients

- Proton Driver
 (primary beam on production target)
- Target and Capture
 (create π's; capture into decay channel)
- Phase Rotation (reduce ⊿E of bunch)
- <mark>Cooling</mark>

(reduce transverse emittance of beam) \Rightarrow Muon Ionization Cooling Experiment

- Acceleration
 (130 MeV → 20–50 GeV with RLAs)
- Storage Ring

 (store muon beam for ≈500 turns;
 optimize yield with long straight
 section aimed in desired direction)

Feasibility Study II version

- CERN scheme
 - one extra step compared with Neutrino Factory: ionization of beta unstable isotopes
 - also one step less: no cooling of beam
 - premium on rapid acceleration, but less so than for muon beams

- Progress and Plans: Neutrino Factory
- Starting place for Neutrino Factory design is Palmer's updated version of "Study-II" design (Gallardo talk)
 - uses RF sections for both bunching and phase rotation
 - uses new cost-optimized cooling channel
 - uses acceleration scheme based on FFAGs

- Progress and Plans: Neutrino Factory
- These changes should markedly reduce cost of the facility
 - RF bunching and phase rotation section shorter than induction linac version, and uses less expensive components
 - original scheme took 25% of total cost
 - \circ new scheme can keep both μ^{-} and μ^{+} simultaneously
 - RLA was major cost in Study II Neutrino Factory design (23%)
 - large aperture FFAG magnets accommodate the large energy change per turn without requiring separate arcs
 - avoids large aperture splitter-recombiner magnets
 - increased acceptance downstream allows reduction in required cooling (20% of facility cost)

- Buncher and rotator concept due to Neuffer
- Overall layout more compact than Study II version

 \cdot RF buncher and rotator

• New design (Palmer) uses less cooling than Study II version

Progress and Plans: Neutrino Factory

- 50 m vs. 108 m
- weaker focusing, β_{\perp} = 70 cm vs. 40 cm
- fewer solenoids
- solid (Li or LiH) vs. liquid-hydrogen absorbers
 - no performance difference in a short channel

- performance is acceptable (yield better than Study II if larger downstream acceptance is realized)
 - must verify this when more realism is added to simulation model

BERKELEY LAB

- But, much work to be done to make initial simulations more realistic (Fernow talk)
 - must produce lattice for entire front end
 - replace constant buncher and rotator fields with periodic solenoids
 - join all separately-calculated regions into one continuous lattice
 - carry out proper matching between regions
 - add beam-pipe constraints in capture section
 - add realistic RF windows in all cavities
 - implement discrete RF frequencies for buncher and rotator
 - use MARS to make sure radiation levels in capture and decay region are acceptable
 - do GEANT simulation of final configuration

- Other studies undertaken to see how well optimized the design is with regard to cost-performance trade-offs
 - optimize magnetic channel for capture and decay region
 - compare alternative window and absorber materials
 - attempt to shorten phase rotator section
 - evaluate dependence of performance on RF gradient
- Present assignments (abridged)*
 - Gallardo: periodic transport solenoids, buncher windows
 - Fernow: design capture solenoids, match into cooling section
 - Kirk: develop MARS radiation map and new particle distribution
 - Paul: optimize field profile for capture and decay section
 - Neuffer: study material effects and optimize rotator length
 - Fukui: study performance effect of reduced gradients

*additional volunteers welcome

- TUDVING VARIANTS PERMITS UNDERSTANDING OF COST-PERFORMANCE TR
- Studying variants permits understanding of cost-performance tradeoffs (Neuffer talk)
 - things to examine: energy of cooling channel, buncher and phase rotator parameters, absorber materials
- Looked at replacing LiH absorbers with Be absorbers
 - we have Be foils anyway for terminating the RF cavity fields
 - find cooling somewhat worse ε_{\perp} = 9.3 mm (vs. 7.3 mm for LiH)
 - get $\mu/p = 0.21$ at 80 m (vs. 0.25 at 100 m for LiH)
- \cdot Need to look at H₂ gas-filled cavity performance also

- gives $\mu/p = 0.22$ (vs. 0.24 for Palmer scheme)
- Need to assess how many discrete frequencies are needed for adequate implementation of buncher
 - previous work showed that 10-20 frequencies will suffice
 - tried buncher with 11 frequencies, rotator with 6 frequencies
 - results in μ/p = 0.2 (vs. 0.22 for continuous frequency scheme)
- While these simulations done without fully realistic windows and magnetic fields, results expected to scale to fully realistic case

- Optimization of capture and decay region (Paul's talk)
 - goals: maximize muon yield, evaluate cost-optimization
 - start from Study II configuration
 - 24 GeV p incident at 67 mrad from solenoid axis
 - Hg jet, 1-cm diameter, at 100 mrad from solenoid axis
 - \circ tapered solenoidal matching section (=20 T at target to =1 T in decay channel)
 - uniform solenoidal decay channel

- Present results favor long taper (20 m); 1.25 T and 2 T decay channels similar
 - crude cost optimization (based on yield per unit of stored energy in magnets relative to that in Study II) favors 1.25 T field

— looks like 10 m drift is a sensible compromise

 need to evaluate with same energy cuts as downstream channel (100–300 MeV/c)

- High-power proton drivers are a key ingredient for a Neutrino Factory, a Beta Beam facility, a Superbeam
 - also important for neutron spallation, kaon or muon beam facilities
- There are many proposals for proton drivers (Kirk talk)

- we need to compare the needs of the various users to assess how well the proposed projects fulfill them
- Fermilab proposing Proton Driver project (CD-0 by end of year) to
 - replace 400 MeV linac
 - develop new 8 GeV proton driver (0.5 MW)
 - upgrade MI to 2 MW

 Acceleration goal is to replace Study II RLAs with (hopefully) less expensive system based on FFAG rings (Berg talk)

Progress and Plans: Neutrino Factory

- limited FFAG energy swing (2:1) means that linac and RLA probably cannot be avoided
- Plan is as follows
 - base FFAGs on cost-optimized parameter sets (5–10 GeV and 10– 20 GeV) [Berg]
 - develop rough magnet design to get end fields [Kahn]
 - track beam with ICOOL [Palmer] (start with 5-10 GeV; hardest)
 - validate with another code [Berg]
 - design linac and RLA for low energy acceleration [Bogacz]
 - specify kicker specifications [Palmer]
 - produce realistic FFAG magnet design for costing [BNL/LBNL] (start with 10–20 GeV; most expensive)

• Tentative FFAG parameters

E_{\min} (GeV)	-	5	1	0
$E_{\rm max}$ (GeV)	10		20	
$V/\omega\Delta T\Delta E$	1/8		1/12	
$A_{\perp n} (\mathrm{mm})$	30			
L_0 (m)	2			
L_Q (m)	0.5			
V per cell (MV)	7.5			
Empty cells	8			
ν_x, ν_y at E_{\min}	0.35			
n	90		105	
$C(\mathbf{m})$	606.918		767.953	
V total (MV)	675.0		787.5	
	QD	QF	QD	QF
$L(\mathbf{m})$	1.612338	1.065600	1.762347	1.275747
ρ (m)	15.2740	-59.6174	18.4002	-70.9958
$x_{\rm O} ({\rm mm})$	-1.573	7.667	1.148	8.745
r (cm)	14.0916	15.2628	10.3756	12.6256
B_0 (T)	1.63774	-0.41959	2.71917	-0.70474
B_1 (T/m)	-9.1883	8.1768	-15.4948	12.5874

 Low energy system will start with linac to 1.5 GeV, followed by "dogbone" or racetrack RLA

- Hope to provide sufficient detail for a crude cost estimate
- Will track the favored design

- Discussion issues
 - use of μ^{\star} and μ^{-} beams simultaneously needs to be worked out, including detector implications

Progress and Plans: Neutrino Factory

- we presently are designing for 1 MW proton driver
 - should we be optimizing for 2 MW instead?
 - has implications for cooling and/or acceleration design and costs
 - if Superbeams use 2 MW, shouldn't we?
 - related question: is $1 \times 10^{20} v_e$ per year enough?
- is there agreement that 20 GeV beam energy will suffice?
 we still hear mention of 50 GeV sometimes
- all our work to date assumes proton driver energy of 8–24 GeV
 - we should acknowledge possibility of 120 GeV beam from MI

- Beta beam work presently centered at CERN (Blondel talk)
 - based on acceleration and storage of light beta-unstable isotopes
 - use ⁶He for β ($t_{1/2} = 0.8$ s)
 - use ¹⁸Ne for β^{+} ($t_{1/2} = 1.7$ s)
- Current scheme involves SPL, ISOL target, pulsed ECR source, 50 MeV linac, pulsed synchrotron (300 MeV/u), PS (to γ = 9.2), SPS (to $\gamma \approx$ 100), decay ring with long straight section pointed toward detector

- There are many technical challenges of beta beams
 - production target and ion source to give required intensity

- radiation losses in various rings
 - carrying out FLUKA calculations for all stages
 - initial results
 - PS would be heavily activated (replacement needed?)
 - some issues regarding tritium and sodium
 - decay ring dipole with no midplane coil has been proposed

- stacking multiple turns in decay ring without cooling the beam

• Predicted intensity values:

Stage	⁶ He	¹⁸ Ne (single target)
From ECR source:	2.0×10 ¹³ ions per second	0.8×10 ¹¹ ions per second
Storage ring:	1.0x1012 ions per bunch	4.1×10 ¹⁰ ions per bunch
Fast cycling synch:	1.0x10 ¹² ion per bunch	4.1×10 ¹⁰ ion per bunch
PS after acceleration:	1.0x10 ¹³ ions per batch	5.2x10 ¹¹ ions per batch
SPS after acceleration:	0.9x1013 ions per batch	4.9×10 ¹¹ ions per batch
Decay ring:	2.0x10 ¹⁴ ions in four 10 ns long bunch	9.1x10 ¹² ions in four 10 ns long bunch

Only β -decay losses accounted for, add efficiency losses (50%)

- R&D issues
 - isotope production (GEANT simulations)
 - target design (only 100 kW proton beam is present scenario)
 - pre-bunching of high-intensity ion beams (60 GHz ECR source)
 - design of superconducting dipoles
 - need ramped magnets for PS/SPS
 - need high-field, rad-hard dipoles for decay ring
- Scenarios for higher energy U.S. beta beam being explored (Jansson talk)

- Organizers have a mid-course meeting on April 1–2, 2004
- Expect report to be completed in June-July
- It seems worthwhile to have at least one in-person meeting to present our conclusions and plan for the report writing
 - it may also be prudent to meet with the Superbeam group (since we failed badly this meeting)
- Possible dates (based on my schedule)
 - mid-April (12-26)
 - early in this period, Chicago is preferred venue
 - after April 22, BNL is the preferred venue
 - May (after 5/10)
 - we need to be writing report by then!
 - early June (depending on when report is due)

- Have a plan how to proceed on Neutrino Factory and Beta Beam study
- We still have a lot to do, and not much time to do it
- It is important that the case for continued accelerator R&D in support of the physics program be part of the roadmap
- It should be clear from the work summarized here that there's a lot we may be able to do to make a more cost-optimized facility
 - it will help to get a firm idea of what performance is good enough, since, in general,

"Good enough is best"