
nds
gen-
nted
r of
d
s are
ia
al
 a

put
run.

ly
d

ll

d use
h
llow-

nd
esired
t text

AT
Quick User Manual for the NIME Pre-Processor

12 February 2001
William M. Fawley - LBNL - (fawley@lbl.gov)

Introduction

NIME (NI fty MacroExpander) is a relatively simple Tcl/TK script which accepts a standard
ASCII format file as input and then, after scanning the file for various macro definitions, expa
any macros in text to produce a final output file. The basic goal of NIME is to allow a user to
erate multiple blocks of text from repeated use of a relatively few numbers of heavily comme
macros. The idea for NIME sprang out of a Friday afternoon conversation with Bob Palme
BNL with both of us bemoaning the difficulty of generating error-free ICOOL input decks an
also noting that a large portion of the text lines which determine the ICOOL transport lattice
repeated over and over again. Moreover, ICOOL input decks permit little or no annotation v
comments which makes then extremely difficult to analyze days or months after their origin
generation. Hence, we both felt that a simple utility which could expand text macros within
simple, heavily commented ASCII input files could be very useful. NIME, while “targeted”
toward the generation and maintenance of ICOOL input decks, will actually work upon any
ASCII file. Thus, NIME could prove useful, to give an example, for generating a series of in
files for batch runs at NERSC in which only a few lines or variables might change from run to

Running NIME

The Tcl (Tool Command Language) scripting language and its GUI counterpart TK are free
available for all major platforms(e.g. UNIX, LINUX, WIndowa, MacOS) and may be obtaine
from the following Web URL:http://www.scriptics.com/software/ . NIME itself
is defined by the Tcl/TK script filenime.tk and, for non-Unix platforms, generally must run
under the programwish , the TK shell interpreter. On Unix/Linux platforms, one can put a she
command callingwish in the first line ofnime.tk to make it directly runnable (i.e. by simply
typingnime.tk).

Here is a synopsis of the basic sequence of events one would normally follow to generate an
an ICOOL input deck: 1. In one’s favorite editor, put together an ASCII NIME input file whic
would include the needed macro definitions, macro calls, and ICOOL input fields (see the fo
ing pages for further details) 2. In a terminal window, type:wish nime.tk . The main
NIME window should then appear (see Fig. 1). 3. Via the “Read Input” button, read in the
NIME input file. 4. Make additional changes in the text frame (if needed) and then, via the
“Expand Macros” button, have NIME expand the macros at the appropriate places in text a
place the results into a new text frame. 5. In the expanded macro text frame, make any d
changes and then hit the SAVE OUTPUT button to write the text to a resulting ICOOL inpu
file. 6. Via a soft link or an alias, make the resultant input deck synonymous with FOR001.D
and run ICOOL in the normal fashion.

ry
ill

nd

e
ey-
nged
e file
ow

stan-

nges

e

s may
Detailed Explanation

Since NIME is a Tcl/TK script, one should make sure Tcl/TK is installed and that the directo
containing thewish executable appears in one’s “path” on Unix/LINUX system (or else one w
get a “command not found” message when trying to executewish) . At present, nearly any ver-
sion of Tcl/TK should be compatible with the nime.tk script; certainly any version at or beyo
8.0 should work just fine.

NIME Input File
NIME seeks an ASCII input file (default nametest.nime) as shown in the upper right text
box (just to the left of the red QUIT button; see Fig. 1) of the main NIME window. This filenam
can be replaced by placing the cursor within the text box and then typing the appropriate k
strokes. Note that nearly all NIME text boxes and window are editable. Once one has cha
the filename to that wanted, hitting the yellow “Read Input” button causes NIME to scan th
and places the contents into an editable text frame in the lower part of the main NIME wind
(see Fig. 2)

If one desires, one may then edit the interior text to make additional changes. Many of the
dard EMACS key bindings are supported by TK text frames, such as CTRL-a, CTRL-e,etc.
These changes propagate when the green “Expand Macros” button is hit. However, the cha
are native to a NIME buffer only and willnot be saved to disk until the purple “Save Changes”
button is pressed upon which time the present state of the visible text will be written to a fil
whose name is given by the far right text box.

Input File Comments and Annotations
Comments are signaled in the NIME input file by an exclamation point (!) and may appear on
isolated lines by themselves or on “shared” lines preceded by non-comment text. Comment
also appear within macro definitions and expansions. For example:

Fig. 1: Main NIME window before reading input file

arser,
.

ew

nu-
rcent

eded
tric-
e).

ame
! this is a comment on a line all by itself
\accel_macro rf_freq=1.e9 !--- this is a GHZ RF cavity
CELL !-- this cell contains apertures and thick foils

After NIME scans the input file, comments are highlighted inbluein the main NIME window (see
Fig. 2). During macro expansion, once an exclamation point is encountered by the NIME p
the remaining text on that line is ignored and is not echoed to the output expansion window

Macro Definition Rules and Interior Variables
Rules concerning macro definitions are as follows. All macro definitions must begin on a n
line that starts with\def immediately followed by a space and then the macro name,
e.g. \def RF . The macro name is case-sensitive and should include only “normal” alpha
meric characters and not special symbols such as asterisks, dollars signs, ampersands, pe
signs, pound signs, forward or backslashes, exclamation points,etc.These limitations are gener-
ally due to NIME’s use of Tcl’s pattern searching functions. There should beno spaces within a
macro name; underscores, however, are permitted. Following the\def line should be lines con-
taining the full text of the macro. FInally, a new line beginning with\enddef terminates the
macro definition. See Fig. 3 for some examples.

Each macro definition may contain one or more “variables” whose individual names are prec
by a percent symbol (%). The individual characters of the variable name have the same res
tions as those of macro names (i.e.no special characters and no spaces within the variable nam
A given variable may occur more than once within the same macro definition. Adefault value
may be assigned to a variable (to be used when the macro is expanded) byimmediatelyfollowing
the variable name by a parentheses-enclosed value,e.g.%freq(120.e6) . However, onlyone
such default value is permitted for any particular variable in a given macro definition - the s

Fig. 2: Main NIME window after reading input filesample.inp .

ame
tions
cros.
etely
ld

r, a
se

nd the

ded
ad
s (if
llow-
s

default value will be used for all instances of the variable within a macro expansion. The s
variable name (and different default values) may appear in different individual macro defini
but effectively each instance is completely unique to each macro and unknown to other ma
In effect, the macro variables are similar to individual elements of self-contained (and compl
private) C-structures or Fortran90 types. However, this name reuse is not advised and cou
become problematic in future NIME versions.
A macro definition may appear anywhere in the text body of the NIME input file. In particula
macro may be used in the text before its definition actually appears. This is possible becau
NIME first scans the input file for macro definitions and then makes a second scan to expa
text, including any macro use. Macro definitions are highlighted inredin the main window while
macro instances are backlighted in white (see Fig. 3).

Macro Use
To actually use a macro (i.e. have it expanded in the text), one places the macro name prece
by a single backslash,e.g.\RF , at the beginning of a line (use anywhere else will probably le
to bizarre results!). If the macro definition included variables, one may override default value
any) to these variables by including their name (preceded by a % symbol), an immediately fo
ing equal sign, and then the wanted value on thesame line as the macro call. For example, if ha
a macro namedRF as in Fig. 3, to call this macro and set the RF frequency to 360 MHz, one
would write:
\RF %freq=360.e6
If a later one needed 720 MHz RF, one would type:

Fig. 3 Sample input file macro definitions as they would appear in main NIME window

en
ll, all

allows
pati-
ose

the
lank

nded
ro
isplay
ing
\RF %freq=720.e6
Hence, it is most useful to use the “variable” feature of a macro for those quantities that oft
change from one wanted instance to the next. Within the final expansion of a given macro ca
expansions of a particular individual variable will result in the same value.

Comment-only and blank linesnot contained within macro definitions are “eliminated” during
expansion and are not echoed to the expanded text window (see Fig. 4). On one hand, this
one to use blank lines liberally in the NIME input file to improve readability and is also com
ble with ICOOL’s requirements. On the other hand, if NIME is being used for another purp
and a blank line is needed in the final output, one can either add it manually by editing within
“expanded macros” window or by defining a special macro whose body consists of a single b
line which would be expanded unchanged for each call.
.

Macro Expansion
Once one is satisfied with the interior text contents of the main window, the text may be expa
by hitting the green “Expand Macros” button to the left. At this point, NIME will parse the mac
definitions, remove comments and blank lines, expand macro calls when encountered, and d
the resultant text in a new “expanded macros” window (see Fig. 4). Lines similar to the follow
should appear in one’s active terminal:
scanning macro definitions in file: test.nime
now expanding macro definitions in input file: test.nime

Fig. 4: “Expanded macros” window resulting from expansion of text in Fig. 2 window

or
 in

use
lank
ly

 dirty
ave to

tting
cyan

E
a pre-

ee
e been

s text

odi-
quite
If NIME finds errors in the text to be expanded (usually due to mistyped macro names and/
macro variables), it outputs additional lines to the terminal flagging the error and its location
the main NIME window:
--> ERROR: line # 30
.......could not find macro definition: rf_frew

NIME’s error detection facilities are primitive and there are probably quite a few ways to ca
bizarre behavior and/or output. One particularly way is to have a line which is completely b
except for a non-printing character (such as CTRL-a). This line will expand to an apparent
blank line (but the CTRL-a is there) which is problematic for ICOOL in particular.

The text in the expanded macro window is editable. Hence, one may make some quick and
changes if necessary (although it is probably better to do so in the main window and then s
a new NIME input text file using the purple “Save Changes” button). Once all appears OK, hi
the green “Save Output File” button will save the text to a file with the name appearing in the
text box to the right of the label>> Filename: . The default name is that of the NIME input file
with a new suffix of “.out” but the user can change it to any system-permissible value. NIM
does not check to see if the chosen name already exists on disk and will thus overwrite such
existent file with absolutely no warning to the user.Caveat emptor...

Note that in Fig. 4 all of the macro definitions and comments of the original NIME input file (s
Figs. 2 and 3) are gone and that the various macro calls with any associated variables hav
expanded.

NIME Customization
Those with a nerdish streak can customize their own copy of NIME vianime.tk . In particular,
the color scheme can be adapted to one personal taste. Lines that call TK widgets (such a
boxes) which contain the phrase-background color or -foreground color can be
edited to substitute one’s own colors. Similarly, window and button titles can also be easily m
fied. Unless one is reasonably adept at Tcl scripts, changing the parsing routines is probably
ill-advised.

	Quick User Manual for the NIME Pre-Processor
	Introduction
	Running NIME
	Detailed Explanation
	NIME Input File
	Input File Comments and Annotations
	Macro Definition Rules and Interior Variables
	Macro Use
	Macro Expansion
	NIME Customization

