

Proton Driver: Status and Plans

C.R. Prior

ASTeC Intense Beams Group, Rutherford Appleton Laboratory

Proton Drivers

- Types of structure
 - Linac + Accumulator + Compressor rings
 - Linac + RCS + RCS (+ storage ring)
 - Linac + RCS + FFAG
 - Linac + FFAG
- Major issues
 - low (uncontrolled) beam loss
 - halo control
 - injection/accumulation
 - beam chopper
 - bunch compression

Possible "show stoppers"

Halo control/preparation for injection

H⁻ Injection/Accumulation CCLRC

Foil Heating

Fermilab Injection: closed orbit bumps

ASTeC.

Laser Stripping

- Ring lattice designed for laser stripping injection for ESS
- Problems in controlling emittance

Linac and Beam Chopper

- EU/FP6 CARE/HIPPI study
 - linacs up to 200MeV
 - parallel chopper designs under development at RAL and CERN
 - CERN study leading to LINAC4 (possibly also SPL)
 - RAL study for NF and possible ISIS upgrade.

Bunch length
$$\varphi_L = A^{1/2} \frac{\omega_0}{\pi \beta^2 E} \frac{1/2}{2\pi \beta^2 E \eta} \frac{2\pi \beta^2 E \eta}{heV \cos \varphi_s}^{1/4}$$

- High RF Voltage
 - Bunch shortens as RF voltage increases during adiabatic compression, but only as fourth root of V.
 - Required voltage rapidly becomes very large.
- High RF frequency
 - Leads naturally to shorter bunches but with small longitudinal emittance and high charge per unit phase space area.
 - Experience of high intensity machines suggests an empirical limit of 1-2 x 10¹²/eV.s for machines which pass through transition. However, no theoretical basis

exists.

Bunch Rotation

- Slow adiabatic decrease of RF voltage to reduce momentum spread without emittance increase.
- Rapid increase of RF voltage so that the mismatched bunch rotates in ¼ synchrotron period into upright configuration.
- Factors of 2 4 in compression, but emittance growth unless bunch is "used" immediately.

Use of Unstable Fixed Point

Step 1. Bunch lengthening at unstable fixed point in RCS, V = 2 MV, h = 4, $\gamma < \gamma_i$

Step 2. Phase change of 180° transfers bunch to centre of stable region, where synchrotron motion rotates it to upright (compressed) state. Final bunch length = 1.7 ns (rms).

Bunch length: $\pm 12.5 \text{ ns} (5.6 \text{ ns rms})$ Momentum spread: $\pm 5.0 \times 10^{-3}$ Longitudinal emittance: $\epsilon_L \sim 0.7 \text{ eV.s}$ Number of particles per bunch: 2.5×10^{13}

- Switch phase of RF
 voltage to unstable fixed
 point to stretch bunch.
- Then switch RF phase back to stable fixed point so that bunch rotates to upright position with minimum length.
- Compression factor may be distorted by nonlinear voltage regions.

Unstable Fixed Point + Separate Compressor Ring

Step 1. Bunch lengthening in RCS at unstable fixed point, $V = 2 \mathbf{MV}, h = 4, \gamma < \gamma_i$

- Stretch bunch at unstable fixed point (as before, γ<γt, volts on)
- Transfer to separate compressor ring with γ>γt for phase space rotation. No volts needed.
- Non-linearity problems exist but are reduced.

Step 2. Bunch rotation in a separate Compressor Ring, V = 0, $\gamma > \gamma_i$. Final bunch length =

Flexible Momentum Compaction

- Lattice gymnastics involving frequency slip parameter $\eta = 1/\gamma_t^2 1/\gamma_t^2$.
- Set η=0 and impose RF voltage to create large Δp/p without change in bunch length.
- Switch η back on and bunch will rotate to short length.
- Experiment at Brookhaven AGS with transition jumping quadrupoles achieved 2.5 ns for 5 x 10¹² protons (factor ~3 in compression)

Compression with $\gamma \geq \gamma_t$

•

•

In a separate compressor ring with $\gamma \gtrsim \gamma_i$, V = 1.5 MV, h = 8 bunch (centred on 180°) elongates and rotates in phase space to final upright (compressed) state. Requires a ring with γ_i insensitive to transverse space charge during compression.

Bunch length (nsec)	$\pm 12.5 \rightarrow \pm 4.1$
rms	$5.6 \rightarrow 1.12$
$\frac{\Delta p}{n}$	$\pm 5 \times 10^{-3}$
P	$\rightarrow \pm 2.7 \times 10^{-2}$
γ_i	6.0
Volts (MV)	1.5
Harmonic number	8

- Work with γ close to, and just above, γ_t .
- Space charge assists compression.
- High RF voltage (1.5 MeV at h=8) based on φ_s =180°
- Simulation gives the required ~1-2 ns bunches but sensitive to space charge depression of γ_{t} .

Bunch Compression in RAL 5 GeV RCS Proton Driver

- γ_t=6.5, γ= 6.33 at top energy, η=-0.0013
- Voltages chosen to avoid instabilities (microwave: V_{sc} < 0.4 V_{applied})
- Model assumes inductive $Z_{//}/n \sim 5\Omega$
- During final 500 revs of accelerating cycle, an additional h=24 voltage system swings in, rising to a peak of 500 MV
- Final bunch length =1ns rms, $\varepsilon_L = 1.0 \text{ eV.s}, \Delta p/p = 1.6\%$.
- Higher order momentum effects need to be taken into account
- Lattice resistant to space charge depression of γ_t for currents of ~1250 A

Bunch Compression in RAL 5 GeV RCS

 γ_t =6.5, γ = 6.33 at top energy, η =-0.0013

Voltages chosen to avoid instabilities (microwave: $V_{sc} < 0.4$ $V_{applied}$)

Model assumes inductive $Z_{//}/n\sim 5\Omega$ During final 500 revs of accelerating cycle, an additional h=24 voltage system swings in, rising to a peak of 500 MV

Final bunch length =1ns rms, $\varepsilon_L = 1.0 \text{ eV.s}, \Delta p/p = 1.6\%$.

Higher order momentum effects need to be taken into account Lattice resistant to space charge depression of γ_t for currents of ~1250 A

Figure 3a: Bunch after 660 Turns (End of Accumulation / Begin of Rotation) Figure 3b: Bunch after 7.5 Turns (End of Rotation) in the Compressor

SCCLRC 4MW, 50Hz, 10GeV Proton Driver

Proton Drivers

Table 1

Upgrade Parameters of Existing and Proposed Proton Drivers.

The pulse structure is given in terms of the pulse duration τ_p , the number of bunches N_b making up each pulse, and the final compressed rms bunch length τ_b .

Driver	Power	Type	Energy	Frequency	Protons	Pulse structure		
	(MW)		(GeV)	(Hz)	per pulse	$\tau_p~(\mu s)$	N_b	τ_b (ns)
					$(\times 10^{13})$			
BNL-AGS	1	Synch	28	2.5	9	720	24	3
	4	Synch	28	5	18	720	24	3
	4	Synch	40	5	12.5	720	24	3
FNAL	2	$Synch^1$	8	15	10	1.6	84	1
	2	$Linac^2$	8	10	15			
FNAL MI	2	Synch	120	0.67	15	10	530	2
CERN-SPL	4	LAR	2.2	50	23	3.2	140	1
	4	LAR	3.5	50	14	1.7	68	1
J-PARC	0.75	Synch	50	0.3	31	4.6	8	6
RAL	4	Synch	5	50	10	1.4	4	1
	4	Synch	6-8	50	8.3	1.6	6	1
	4	FFAG	10	50	5	2.3	5	1
	4	Synch	15	25	6.7	3.2	6	1
RAL/CERN	4	Synch	30	8.33	10	3.2	8	1
KEK/Kyoto	1	FFAG	1	10^{4}	0.06	0.4	10	10
	1	FFAG	3	310^{3}	0.06	0.5	10	10

Status

- Parameters needed so that comparisons may be made with:
 - BNL's scheme of single 25 GeV bunches (15/50 Hz)
 - FNAL's 8 GeV linac, accumulator+compressor scheme
 - CERN's 5 GeV SPL, accumulator+compressor scheme
- Comparable tracking studies required
 - injection schemes, foil heating etc
 - bunch compression
- How close can these scenarios come to generating the preferred pulse structure?

Plans

- Bid submitted for 3 yrs continuation funding to UK/PPARC
- Covers
 - theoretical study of RAL RCS-FFAG 10GeV, 4MW proton driver
 - Development of FFAG space charge tracking code.
 - Injection tracking with space charge in the booster.
 - Space charge tracking for booster and driver rings.
 - completion of PD front-end test stand
- More substantial bid provisionally submitted to CCLRC for high intensity proton "test facility"
 - exact details to be agree
 - could include an electron model for NFFAG proton driver.

- Accumulator and Compressor ring for SPL (what energy?)
 - injection modelling and bunch compression
- Other SPL scenarios
- Continued work on Ruggiero FFAG proton driver
- other:

Parameters for 50 Hz, 0.2-3.0 GeV Booster

Number of superperiods Number of cells per superperiod Length of cells Mean radius Betatron tunes Transition gamma Energy range gamma Main dipole fields Secondary dipole fields Triplet length/quad gradient

4

4 straights + 3 bends 4x14.1+3x14.6 63.788 m $Q_{=}6.38, Q_{h}=6.30$ 6.57 0.18-3 GeV 1.19-4.197 0.185-1.0996 T 0.0551-0.327 T $3.5 \text{ m}/1.0-5.9 \text{ Tm}^{-1}$