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What Happens in the Phase Rotation and
Bunching Channel?

● Look at the process in reverse

● Particles are captured into a series of buckets in the buncher
section

● The phase rotation channel changed energies to put particles
into bucket energy range

● A drift spread the particles out in time

● Longer proton (thus muon) bunch length: fewer particles fit in
buckets
◆ Note: more bunch length important for high-energy muons
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Buckets in Bunching Channel
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Buckets Mapped Back to Before Phase
Rotation

-20 -10 0 10 20 30
Time (ns)

100

200

300

400

500
T

ot
al

 E
ne

rg
y 

(M
eV

)

4



Buckets Mapped Back to Before Phase
Rotation
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Analyze with Model

● Start with a distribution of pions in energy, ρ(Eπ)

● Assume zero transverse momentum

● Assume equal probability of decay forward and backward in COM
frame

● Look at distribution in energy-time of muons at distance L
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Results from Model

● Can compute range for RMS bunch length at fixed energy

τπ
m2

π − m2
µ

2mπpµ
< στ(Eµ) < τπ

m2
π − m2

µ√
2mπpµ

● Add in quadrature to get bunch length στ

● Assume bunch length much longer than length captured
◆ Then density at core determines amount captured
◆ Integrate στ over energy to get inverse of core density
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Simulation

● Distribute initial times according to Gaussian

● Uniform initial energy distribution

● Do random decay times (exponential)

● Do random decay direction (forward/backward only) in COM
frame

● Look only at final momentum 100 to 300 MeV/c
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Distribution in Final Phase Space
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Distribution in Final Phase Space
Zoom In Near 200 MeV/ c
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Distribution in Time
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στ vs. Energy
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στ vs. Energy
Theory Included
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Estimated Capture Efficiency vs. σ0
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Discussion

● Simulation close to lower bound
◆ Asymmetry of dEπ±/dEµ

◆ Adding RMS in quadrature not quite right

● Can potentially get different effect from phase rotation
◆ Phase rotation gives largest energy spread on early times and

high initial energy
◆ Energy cut at capture will affect different pieces differently

● Could also try using real initial distribution of pions
◆ However, since simulation matches theory lower bound, don’t

expect much
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Perfect Phase Rotation

● Reduce Eµ by
mµ

√

1 − (L/tµ)2

● Not really “perfect”
◆ Should first leave high energy part with spread
◆ Allow to stretch out more in time
◆ Then rotate it down
◆ Makes energy spread uniform in time
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Phase Space After Perfect Rotation
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