Dependence of Transmission on Proton Bunch Length: Theory and Simplified Simulation

J. Scott Berg
Brookhaven National Laboratory
ISS Machine Working Group Meeting, Princeton
27 July 2006

What Happens in the Phase Rotation and Bunching Channel?

- Look at the process in reverse
- Particles are captured into a series of buckets in the buncher section
- The phase rotation channel changed energies to put particles into bucket energy range
- A drift spread the particles out in time
- Longer proton (thus muon) bunch length: fewer particles fit in buckets
 - Note: more bunch length important for high-energy muons

Buckets in Bunching Channel

Buckets Mapped Back to Before Phase Rotation

Buckets Mapped Back to Before Phase Rotation

- Start with a distribution of pions in energy, $\rho(E_{\pi})$
- Assume zero transverse momentum
- Assume equal probability of decay forward and backward in COM frame
- Look at distribution in energy-time of muons at distance L

Results from Model

Can compute range for RMS bunch length at fixed energy

$$\tau_{\pi} \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}p_{\mu}} < \sigma_{\tau}(E_{\mu}) < \tau_{\pi} \frac{m_{\pi}^2 - m_{\mu}^2}{\sqrt{2}m_{\pi}p_{\mu}}$$

- ullet Add in quadrature to get bunch length σ_{τ}
- Assume bunch length much longer than length captured
 - Then density at core determines amount captured
 - Integrate σ_{τ} over energy to get inverse of core density

Non Collider

Simulation

- Distribute initial times according to Gaussian
- Uniform initial energy distribution
- Do random decay times (exponential)
- Do random decay direction (forward/backward only) in COM frame
- Look only at final momentum 100 to 300 MeV/c

Distribution in Final Phase Space

Distribution in Final Phase Space Zoom In Near 200 MeV/ $\!c$

Distribution in Time

σ_{τ} vs. Energy

σ_{τ} vs. Energy Theory Included

Estimated Capture Efficiency vs. σ_0

Non Collider

Discussion

- Simulation close to lower bound
 - Asymmetry of $dE_{\pi\pm}/dE_{\mu}$
 - Adding RMS in quadrature not quite right
- Can potentially get different effect from phase rotation
 - Phase rotation gives largest energy spread on early times and high initial energy
 - Energy cut at capture will affect different pieces differently
- Could also try using real initial distribution of pions
 - However, since simulation matches theory lower bound, don't expect much

Perfect Phase Rotation

ullet Reduce E_{μ} by

$$\frac{m_{\mu}}{\sqrt{1-(L/t_{\mu})^2}}$$

- Not really "perfect"
 - Should first leave high energy part with spread
 - Allow to stretch out more in time
 - Then rotate it down
 - Makes energy spread uniform in time

Phase Space After Perfect Rotation

