SPL-based Proton Driver for v Facilities at CERN: Updated Description

R. Garoby, F. Gerigk and the SPL study group

ISS meeting, 25-28.4.06

SPL block diagram (CRD-2)

SPL beam dynamics (CDR-2)

Beam dynamics (CEA Saclay)

R. Garoby (for the SPL study group SPL-based Proton Driver for v Facilities ISS meeting, 25-28.04.06

(4)

40.

• Ez • Ey • Ex

SPL beam characteristics

	CDR1	CDR2	
	[2000]	[2006]	
energy	2.2	3.5 👔	GeV
average beam power	4	4	MW
length	690	450 🌡	m
average RF power	24	17.4 🌡	MW
average cryogenics power	9.6	6.7 🌡	MW
repetition rate	50	50	Hz
beam pulse length	2.8	0.57 🌡	ms
average pulse current*	13	40 👔	mA
peak current*	20.8	64 1	mA
beam duty cycle	14	2.9 🌡	%
peak RF power	32	163 🎚	MW
no. of 352.2 MHz klystrons (1 MW)	44	14 👔	
no. of 704.4 MHz klystrons (5 MW)	-	44	
no. of tetrodes	79	3	
cryo temperature	4.5	2 🖡	К

* after chopping

Scenarios for accumulation & compression (1/7)

For v physics, the time structure of the linac beam has to be changed:

The requirements of a v factory are the most demanding.

Scenarios for accumulation & compression (2/7)

Parameters required by a v factory*

Beam power (P)	~ 4 MW
Kinetic energy (T)	4 – 10 GeV
Bunch length	1-3 ns rms
Distance between bunches ???	≥ 100 ns
Burst length	1-3 μs
Repetition rate	≤ 50 Hz

* Partial understanding...

Scenarios for accumulation & compression (3/7)

Consequences for a linac-based driver

Kinetic energy (T)	Cost increases with T ⇒ Minimize T (< 4 – 8 ? GeV)
Repetition rate (f_{rep})	Constant beam power imposes the number of protons/pulse N _p
Bunch length (I _b)	Energy acceptance + longitudinal space charge restrict to low longitudinal emittance ⇒ minimum number of bunches (N _b)
Distance between bunches (d _b)	Accumulator circumference C is proportional to $N_b \times d_b$ & Laslett tune shift ΔQ is proportional to C \Rightarrow minimize d_b to minimize ΔQ & cost
Burst length	Constraints the highest value of C

Scenarios for accumulation & compression (4/7)

With SPL CDR1 (2000): severe constraint due to the low beam energy

Scenarios for accumulation & compression (5/7)

	With SPL CDR2 (2006): higher beam energy => less constraints		
First approach			
K	inetic energy (T)	3.5 GeV	
R	epetition rate (f _{rep})	50 Hz \Rightarrow N _p = 1.43 10 ¹⁴ p/p	
B	unch length (l _b)	For the same $\Delta p/p$ acceptance + because of lower N _p + relaxing on I _b (2 ns instead of 1 ns) \Rightarrow N _b (goal) = 17 [8.41 10 ¹² p/b]	
D b	istance between unches (d _b)	d _b (goal) = 90.86 ns C (goal) = 1.635 μs	

Feasibility in the accumulator/compressor has been pre-checked

With a linac-based driver there is the possibility to do multiple accumulations with a single linac beam pulse, and therefore generate multiple bursts of beam onto the target.

This is of interest if:

- all parameters are constant in the μ channel during the whole duration of the proton beam on the target (transverse focusing, gradient in the RF cavities...). It is not unreasonable to hope for ~ 1 ms.

- the μ storage ring is long enough to contain all the successive bursts.

The main disadvantage is that the kickers must provide multiple kicks within $\sim 1 \text{ ms.}$

This makes it possible to tailor the intensity per burst / the distance between bunches / the main cycling rate of whole facility...

Scenarios for accumulation & compression (7/7)

With SPL CDR2 (2006): other approach using multi-pulsing

Fill & eject 6 times single bunches from an accumulator/compressor of 272 ns revolution period		Fill & eject 12 times single bunches from an accumulator/compressor of 272 ns revolution period	
Kinetic energy (T) > 3.5 GeV		3.5 GeV	
Repetition rate (f _{rep}) 6 bunches at 50 Hz		12 bunches at 25 Hz	
Number of protons/bunch	2.4 10 ¹³ p/p	2.4 10 ¹³ p/p	
Time interval between bunches	95 μs	95 μs	
Total burst duration	475 μs	1.045 ms	
Bunch length (I _b) ~ 3 ns ?		~ 3 ns ?	

Many open questions to be studied ...

Conclusions & outlook

The new SPL design (CDR2 – 2006) is largely improved:

- energy (3.5 GeV) is a compromise that can potentially satisfy EURISOL, neutrino applications, and LHC upgrade scenarios,
- design is more optimum (length reduced by 35% while the energy is increased by 60%, higher instantaneous current reducing the number of turns for accumulation in the ring...)
- upgrades are possible in terms of energy and/or power.

This typically illustrates the potential of a linac-based proton driver for a v factory, which can be the basis of a high energy accelerator complex [\rightarrow] and has a remarkable flexibility to adapt to the requirements of the following part of the facility.

Evolution of the CERN accelerator complex

Scenarios for the proton accelerator complex

- Stages of implementation

STAGE	1	2	3	4
DESCRIPTION (new accelerator)	Linac4 PSB PS SPS	Linac4 PSB PS2 or PS2+ (& PS) SPS	<i>Linac4</i> <i>SPL</i> <i>PS2 or PS2</i> + <i>SPS</i>	Linac4 SPL PS2 or PS2+ SPS+
Performance of LHC injectors (SLHC)	+ Ultimate beam from PS	++ Ultimate beam from SPS	++ Maximum SPS performance	+++ Highest performance LHC injector
Higher energy LHC	-	-	-	+++
β beam	-	-	++ (γ ~100)	++ (γ ~200)
v Factory	-	-	+++ (~5 GeV prod. beam)	+++ (~5 GeV prod. beam)
k , μ	-	~150 kW beam at 50 GeV	~200 kW beam at 50 GeV	~200 kW beam at 50 GeV
EURISOL	-	-	+++	+++

Exotic scenarios for accumulation & compression

With SPL CDR2 (2006): other approach using multi-pulsing

Fill & eject 6 times multiple bunches from an accumulator/compressor of 272 ns revolution period		Fill & eject 12 times multiple bunches from an accumulator/compressor of 272 ns revoluton period	
Kinetic energy (T)	> 3.5 GeV	3.5 GeV	
Repetition rate (f _{rep})	6 batches of 3 bunches at 50 Hz	12 batches of 3 bunches at 25 Hz	
Number of protons/bunch	2.4 10 ¹³ p/p	2.4 10 ¹³ p/p	
Time interval between bunches	95 μs	95 μs	
Total burst duration	475 μs	1.045 ms	
Bunch length (I _b)	~ 2 ns ?	~ 2 ns	

<u>Main issue</u>: the distance between bunches imposes a quantum Δf in the μ capture & bunch rotation channel. How much is acceptable ? 10 MHz ?