

International Scoping Study Accelerator Working Group: Status and Plans

Michael S. Zisman

Center for Beam Physics

Accelerator & Fusion Research Division

Lawrence Berkeley National Laboratory

ISS Plenary Meeting-KEK January 23-25, 2006

Introduction

· Third time ISS Accelerator Group meets together

- at CERN, September 2005 (plenary meeting)
- at BNL, December 2005 (Accelerator Group workshop)
- at KEK, this week
 - oplease continue to encourage your colleagues to join the effort
 - subscribe to NF-SB-ISS-ACCELERATOR e-mail list

· We have a full agenda!

- any interested members of the ISS are welcome to attend and contribute to the Accelerator Group
 - oin particular, we welcome input from Detector Group on requirements that impact our design specifications
 - hopefully, discussion takes place at joint session tomorrow
- Accomplishments here and plans for next meeting summarized Wednesday by Rick Fernow

Introduction

- Non Collider
- Accelerator Group will continue after the plenary meeting in "Workshop mode"
 - try to make progress on specific tasks ⇒ more work, fewer talks
 Proton Driver
 - identify issues for producing short (~1 ns) bunches, e.g., define parameters for suitable bunch compression ring or transport line
 - · evaluate space-charge issues
 - look at implications of pulse structure throughout Neutrino Factory facility (including target, front end, acceleration)

Targetry

- assess minimum acceptable proton beam repetition rate at 4 MW intensity (solid and liquid targets)
- develop realistic solid-target scenario (rod, band, pellets, or granular)
- look at production rate as a function of proton bunch length in the range of 1–5 ns

Front End

 look at thermal implications on absorbers and RF windows of muon beam containing both sign muons at 4 MW proton intensity

Acceleration

· FFAG longitudinal dynamics at large transverse amplitudes

Decay Ring

- develop isosceles triangle ring with ~ 40° apex angle
- develop strawman pairs of sites that could be simultaneously served by a triangle ring
- begin tracking 50+20 GeV and isosceles triangle rings with errors

Today's Agenda

Monday, January 23, 2006

Building 4, Seminar Hall

Time	Topic	Speaker	Duration
11:00 - 11:30	C O F F E E		30
11:30 - 12:00	Introduction-Detector Working Group	Blondel	30
12:00 - 12:30	Introduction-Accelerator Working Group	Zisman	30
12:30 - 13:00	Introduction-Physics Working Group	Long	30
13:00 - 14:00	LUNCH	Long	60

Building 4, Room 345

Time	Topic	Speaker	Duration
14:00 - 14:30	SPL as a Neutrino Factory Proton Driver	Prior	25+5
14:30 - 15:00	J-PARC Ring as a Neutrino Factory Proton Driver	Tomizawa	25+5
15:00 - 15:15	Gas-filled Cavity Approaches	Neuffer/Fernow	10+5
15:15 - 15:30	DISCUSSION		15
15:30 - 16:00	COFFEE		30
16:00 - 16:15	Scaling FFAG Issues	Berg	10+5
16:15 - 16:30	Non-scaling FFAG Issues	Machida	10+5
16:30 - 16:50	Optimization of Bunching and Phase Rotation	Palmer	15+5
16:50 - 17:10	RLA Optimization Including Errors	Berg	15+5
17:10 - 17:30	Optimization of Cooling vs. Acceleration Acceptance	Palmer	15+5
17:30 - 18:00	DISCUSSION		30

Tomorrow's Agenda

Tuesday, January 24, 2006

Building 4, Seminar Hall

Time	Topic	Speaker	Duration
11:30 - 12:00	Comparison of Proton Driver Approaches	Weng	25+5
12:00 - 12:30	Decay Ring Progress	Johnstone	25+5
12:30 - 13:00	DISCUSSION		30
13:00 - 14:00	LUNCH		60

Building 4, Room 345

Time	Topic	Speaker	Duration
14:00 - 14:15	Update on MUCOOL R&D	Bross	10+5
14:15 - 14:35	Update on MERIT	McDonald/Zisman	15+5
14:35 - 14:55	Update on MICE	Yoshida	15+5
14:55 - 15:15	Update on PRISM	Sato	15+5
15:15 - 15:45	Scaling FFAGs - Experimental Results	Mori/Aiba	25+5
15:45 - 16:00	DISCUSSION		15
16:00 - 16:30	COFFEE		30
16:30 - 16:50	Intensity Limitations for Solid Targets	McDonald/Zisman	15+5
16:50 - 17:30	Machine Working Group Summary Talk (Dry Run)	Fernow	30+10
17:30 - 18:00	Discussion of Summary Talk content and future plans	All	30

Neutrino Factory Ingredients

- · Proton Driver
 - primary beam on production target
- · Target, Capture, Decay
 - create π , decay into μ
- Bunching, Phase Rotation
 - reduce ΔE of bunch
- · Cooling
 - reduce transverse emittance
- · Acceleration
 - 130 MeV \rightarrow 20 GeV
- · Decay Ring
 - store for ~500 turns; long straight section

FFAG-Based Neutrino Factory

- Alternative design concept based on FFAG rings for phase rotation and acceleration is under study in Japan
 - this approach is being evaluated and compared with other designs as part of our task
 - o implications of keeping both sign muons need evaluation

NF Design: Driving Issues

- · Constructing a muon-based NF is challenging
 - muons have short lifetime (2.2 μ s at rest)
 - oputs premium on rapid beam manipulations
 - requires high-gradient NCRF for cooling (in B field)
 - requires presently untested ionization cooling technique
 - requires fast acceleration system
 - muons are created as a tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - $_{\circ}$ low production rate \Rightarrow
 - target that can handle multi-MW proton beam
 - $_{\circ}$ large muon beam transverse phase space and large energy spread \Rightarrow
 - high acceptance acceleration system and storage ring
 - neutrinos themselves are a quaternary beam
 even less intensity and "a mind of their own"

Challenges

- · Challenges go well beyond those of standard beams
 - developing solutions requires substantial R&D effort
 - R&D should aim to specify:
 - expected performance, technical feasibility/risk, cost (matters!)

"I guess there'll <u>always</u> be a gap between science and technology."

Accelerator WG Organization

- Accelerator study program managed by "Machine Council"
 - R. Fernow, R. Garoby, Y. Mori, R. Palmer, C. Prior, M. Zisman
 - meet (roughly) biweekly by phone conference
- Aided by Task Coordinators
 - Proton Driver: R. Garoby, H. Kirk, Y. Mori, C. Prior
 - Target/Capture: J. Lettry, K. McDonald
 - Front End: R. Fernow, K. Yoshimura
 - Acceleration: <u>S. Berg</u>, <u>Y. Mori</u>, <u>C. Prior</u>
 - Decay Ring: <u>C. Johnstone</u>, <u>G. Rees</u>

Accelerator Study Phase 1

- · Study alternative configurations; arrive at baseline specifications for a system to pursue
 - examine both cooling and no-cooling options
- Develop and validate tools for end-to-end simulations of alternative facility concepts
 - correlations in beam and details of distributions have significant effect on transmission at interfaces (muons have "memory")
 - simulation effort will tie all aspects together
- · Goal: complete this work within 6 months
 - this is going more slowly than I had hoped 😊
- · Making choices requires ("top-down") cost evaluation
 - ISS will require engineering resources knowledgeable in accelerator and detector design

Accelerator Study Phase 2

- Focus on selected option(s)
 - as prelude to subsequent World Design Study
 WDS will have more of an engineering aspect than the ISS
 - this is the aspect "at risk" to delays in Phase 1

· Must develop R&D list as we proceed

- identify activities that must be accomplished to develop confidence in the community that we have arrived at a design that is:
 - o credible
 - o cost-effective
- until construction starts, R&D is what keeps the effort alive

Proton Driver Questions

- Optimum beam energy
 - depends on choice of targetconsider C, Ta, Hg
- Optimum repetition rate (in progress)
 - depends on target and downstream RF systems
- Bunch length trade-offs (in progress)
 - need (and approaches) for bunch compression
 - performance implications for downstream systems ightarrow
- · Hardware options (in progress)
 - FFAG, linac, synchrotron
 compare performance, cost

Optimum Energy

 \cdot Optimum energy for high-Z targets is broad, but drops at low-energy

Proton Driver Phase 1

- · Examine candidate machine types for 4 MW operation
 - FFAG (scaling and/or non-scaling)
 - Linac (SPL and/or Fermilab approach)
 - Synchrotron (J-PARC and/or AGS approach)

Progress report by Bill Weng tomorrow

o consider

- beam current limitations (injection, acceleration, activation)
- bunch length limitations and schemes to provide 1-3 ns bunches
- repetition rate limitations (power, vacuum chamber,...)
- tolerances (field errors, alignment, RF stability,...)
- optimization of beam energy
- Compare and contrast Superbeam and Neutrino
 Factory requirements
 Not much progress; need more SB help

- required emittance and focusing

— how do we migrate from one to the other?

Target/Capture/Decay Questions

- · Optimum target material
 - solid or liquid $_{\circ}$ low, medium, or high Z
- · Intensity limitations
 - from targetor from beam dump, which is no easy task either
- · Superbeam vs. Neutrino Factory trade-offs
 - horn vs. solenoid capture
 o can one solution serve both needs?
 - is a single choice of target material adequate for both?

Target/Capture/Decay Phase 1

- Production rates as f(E) for C, Hg, $Ta \sqrt{ }$
 - do reality check with HARP data if possible
- · Target limitations for 4 MW operation (in progress)
 - use guidance from FEA and experiments
 consider bunch intensity, spacing, repetition rate
- Implications of 1 vs. 3 ns bunches on delivered beam $\sqrt{\ }$
- · Superbeam vs. Neutrino Factory comparisons
 - horn vs. solenoid
 - selected targets

Target Material Comparisons (1)

- · Studied by Fernow, Gallardo, and Brooks
 - targets examined: C (66 cm); Hg (25 cm); Ta (20 cm), all with r=1 cm
 - otarget aligned with solenoid axis
 - ore-interactions included
 - cases studied: C (4, 40 GeV); Hg (4, 40 GeV); Ta (10 GeV)
 - o Hg (24 GeV) is nominal Study 2 "benchmark" case
 - proton bunch length 1 ns
 - operformance decreases 10% for 3 ns bunch
 - accelerator normalized acceptance
 - otransverse: 30 mm
 - olongitudinal: 150 mm
 - omomentum range: 100-300 MeV/c
 - work based on MARS output; need experimental check!

Target Material Comparisons (2)

· Results

— FS2a FOM is 0.0077 μ ⁺ per p-GeV

Target	E _{beam} (GeV)	μ+ per p-GeV	μ ⁻ per p-GeV
С	4	0.0114	0.0113
C	40	0.0043	0.0046
Hg	4	0.0066	0.0098
Hg	40	0.0068	0.0083
Та	10	0.0087	0.0108

Front End Questions

- Practical accelerating gradient and cost per GeV at several frequencies (5, 88, 201 MHz)
 - include power sources as well as cavities
- · Relative performance of existing schemes (KEK, CERN, U.S.-FS 2b)
- Optimization of cooling vs. acceleration acceptance

Front End Phase 1 (1)

- · Compare performance of existing schemes (KEK, CERN, U.S.-FS 2b)
 - use common proton driver and target configuration(s) $\sqrt{}$
 - consider possibility of both signs simultaneously \checkmark
 - conclusions will require cost comparisons, which will come later
- · Evaluate implications of reduced V_{RF} for each scheme
 - take V_{max} = 0.75 V_{des} and 0.5 V_{des} ore-optimize system based on new V_{max} , changing lattice, absorber, no. of cavities, etc. √
- · Optimize U.S. Φ Rotation/Bunching scheme with lower gradients and/or fewer frequencies
 - evaluate performance (started)
 - costs will come later

FS2a-CERN Comparisons (1)

- Looked at both "original" 44+88 MHz version and "improved" 88-MHz-only version
 - accelerator normalized acceptance

otransverse: 30 mm

olongitudinal: 300 mm

omomentum range: 100-500 MeV/c

- Performance of both CERN channels looks much worse than FS2a channel
 - evidence that channel is not long enough or needs tapering

FS2a-CERN Comparisons (2)

- · Results (88-MHz-only channel)
 - FS2a FOM is 0.0077 μ^+ per p-GeV

Target	E _{beam} (GeV)	μ+ per p-GeV
С	4	0.0015
C	40	0.0007
Hg	4	0.0009
Hg	40	0.0011
Τα	10	0.0014

Front End Phase 1 (2)

- · Evaluate trade-offs between cooling efficacy and downstream acceptance
 - consider several values of downstream acceptance (longitudinal and transverse) (under way)
 - small, medium, and large (or extra-large?)
 - o see how much cooling channel can be simplified
 - develop agreed-upon figure-of-merit (e.g., μ/P_{prot}) $\sqrt{\ }$
 - consider need/merits of longitudinal cooling
 - costs will come later
- · Evaluate performance issues and limitations
 - absorbers (LH₂, LiH, Be or plastic) (start at this meeting)
 consider implications of both sign muons
 - RF gradient (e.g., due to windows)
 - interactions with Target group recommended for this topic

Acceleration Phase 1

- · Compare different schemes on an equal footing
 - RLA, scaling FFAG, non-scaling FFAG (started)
 - o consider implications of keeping both sign muons
 - o consider not only performance but relative costs
 - need to bring scaling FFAG design to same level as non-scaling design
- · Prepare scenarios for different values of acceptance
 - transverse and longitudinal
 - o small, medium, large (or extra-large?)
 - some acceptance issues have arisen in non-scaling case (Machida)
 - identify cost drivers
 - othese will be used later to assess cost vs. acceptance
- · Consider matching between acceleration subsystems
 - are there simplifications in using fewer types of machines?

Decay Ring Phase 1

- Design implications of final energy (20 vs. 50 GeV) √
- Optics requirements vs. beam emittance
 - arcs, injection and decay straight sections
- · Implications of keeping both sign muons (under way)
 - can there be both injection and decay optics in this case?
- Implications of two simultaneous baselines
- · Radiation issues at 10²¹ useful neutrinos per year
 - liner vs. open-midplane magnets
- Discuss in joint session tomorrow

Summary

- Making progress toward goal of reaching consensus on a single optimized Neutrino Factory scheme
 - first step is to get proper comparisons of competing schemes
 this is the hard part
- · Joint session tomorrow will discuss
 - initial proton driver comparisons
 - decay ring design progress
- Must articulate need for an adequately-funded accelerator R&D program
 - and define its ingredients
- · Will hold workshop, Bldg. 4, Room 345 Wed.-Fri.
 - all are welcome to participate