

Neutrino Factory and Muon Collider

Collaboration

(MC)

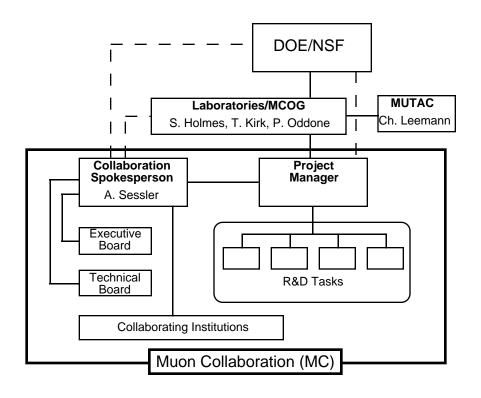
R&D Status and Plans

Michael S. Zisman Center for Beam Physics

> FNAL HEPAP Meeting March 10, 2000

- History
- Collaboration organization
- Neutrino Factory overview
- R&D program goals
- R&D activities and plans
- R&D funding needs
- Summary

- History of Muon Collider
 - concept of muon collider is not new [Tinlot (1960); Budker (1969); Skrinsky (1971); Neuffer (1979)]
 - high-luminosity concepts more recent [Neuffer (1985); Palmer (1994)]
 - strong physics interest led to Collaboration (1995) to plan and carry out R&D work aimed at a Muon Collider [see Snowmass report, BNL-52503, Fermilab Conf.-96/092, LBNL-38946, (1996) ed. J. Gallardo; Ankenbrandt et al., Phys. Rev. ST AB <u>2</u>, 081001 (1999)]
 - identified as promising in report of 1998 HEPAP (Gilman) Subpanel on Future of HEP
- History of Neutrino Factory based on muon storage ring
 - using muon beam from SR: Koshkarev, CERN/ISR-DI/74-62 (1974)
 - using muon ring for intense neutrinos from Geer; Phys. Rev. D <u>57</u>, 6989 (1998)
- Collaboration members played seminal role in advancing these ideas



- Many subsequent workshops and meetings held or planned
 - Front End Physics of a Muon Collider, Fermilab (1997)
 - Potential for Neutrino Physics at Future Muon Colliders, BNL (1998)
 - Meeting in Berkeley (April, 1999)
 - Collaboration meeting in St. Croix (May, 1999)
 - NUFACT99 in Lyon (July, 1999), sponsored by ICFA/ECFA http://lyoinfo.in2p3.fr/nufact99/navnu99.html
 - MC meeting, Catalina, May 17–19, 2000 and NUFACT00, Monterey, May 22, 2000

- Oversight role of "sponsoring" Labs (≡ BNL, Fermilab, LBNL) via MCOG (Directorate level)
 - MCOG appoints Technical Advisory Committee (MUTAC)
 - Project Manager has line responsibility for R&D implementation, working closely with Spokesperson on planning

• *MC* has broad international community involvement (National Labs, Universities, non-U.S. institutions)

- reflected in Board membership

 MC has grown (to 133 members) and is ready to expand efforts on Neutrino Factory R&D

Executive Board:

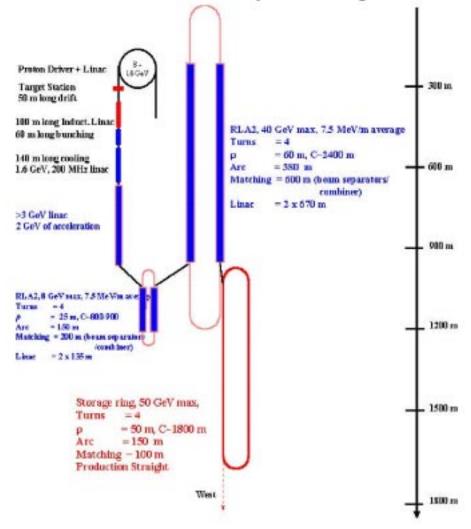
- J. Gallardo, BNL (Secretary)
- R. Palmer, BNL (Associate Spokesperson)
- S. Geer, Fermilab
- A. Tollestrup, Fermilab (Associate Spokesperson)
- A. Sessler, LBNL (Spokesperson)
- J. Wurtele, LBNL/UC-Berkeley
- D. Summers, U. Mississippi
- K. McDonald, Princeton U.
- D. Cline, UCLA
- D. Kaplan, Illinois Institute of Technology
- A. Skrinsky, BINP

Technical Board:

- A. Sessler, LBNL (Spokesperson)
- J. Corlett, LBNL
- S. Geer, Fermilab
- N. Holtkamp, Fermilab
- C. Johnson, CERN
- H. Kirk, BNL
- K. McDonald, Princeton U.
- J. Miller, NHMFL
- J. Norem, ANL
- R. Palmer, BNL
- M. Tigner, Cornell U.
- J. Wurtele, LBNL/UC-Berkeley
- M. Zisman, LBNL (Observer)

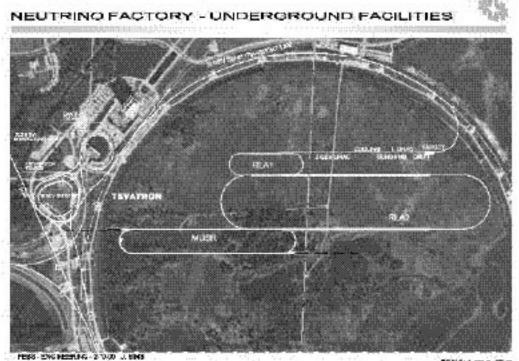
- Neutrino Factory comprises these sections (*MC* doing R&D on all)
 - Proton Driver (primary beam on production target)
 - Target and Capture (create pions and capture into decay channel)
 - Phase Rotation (induction linac to reduce energy spread of bunch)
 - **Cooling** (reduce transverse emittance of beam)
 - Acceleration (raise energy from 200 MeV to 20–50 GeV with RLAs)
 - Storage Ring (store muon beam for ≈1000 turns; optimize yield with long straight section aimed in desired direction)

NOTE: design dominated by diffuse phase space and rapid decay of muons

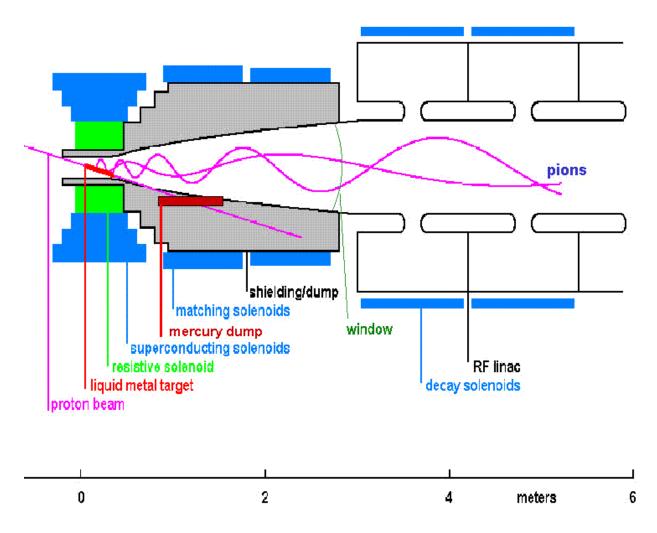

- MC participating in Neutrino Factory Feasibility Study at Fermilab (N. Holtkamp, D. Finley); brings additional groups into the endeavor
 - identify for MC R&D program technologies required for feasibility demonstration (credibility) and associated with "cost drivers" (need to improve technology)
- Expect to participate similarly in future feasibility study at BNL
- Envision summary of feasibility studies at Snowmass '01
- Not an easy project, but no fundamental problems found

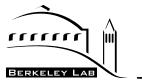
Neutrino Factory Overview

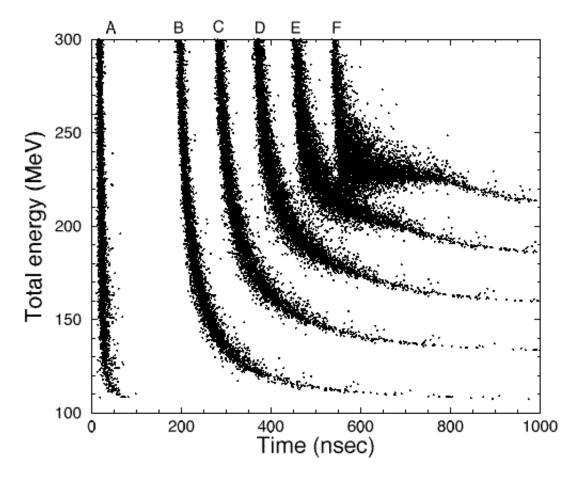
• Generic elements of a neutrino factory

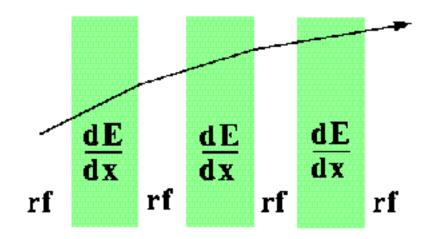

BERKELEY LAB

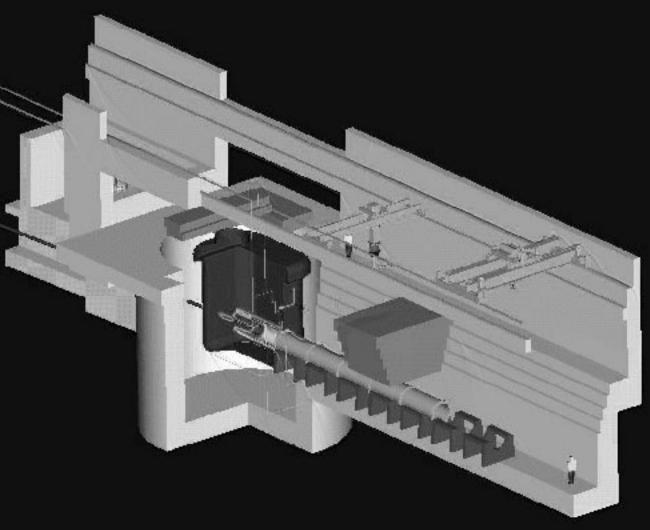
• Footprint on Fermilab site




BOALS: 1 am - dill as


• Target and capture section

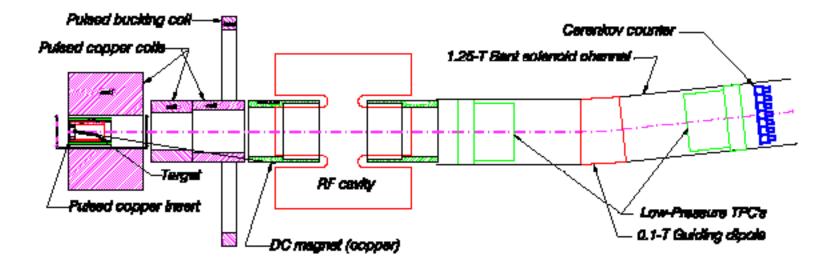

- Effect of phase rotation on energy spread of muon bunch
 - A is after target; B is after drift; C–E inside induction linac; F is linac exit


• Ionization cooling...analogous to radiation damping

• Target station of Neutrino Factory (from ORNL)

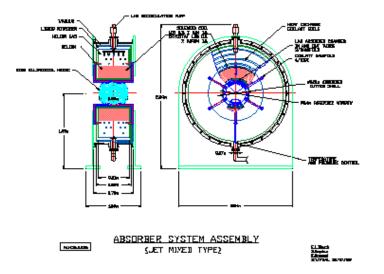
- Define where we want to be 5 years from now in all R&D areas, then work backwards to see what's needed to get there (\$ and effort)
- At the end of 5 years (science/technology-driven schedule)
 - all optics designs completed and self-consistent
 - validation experiments completed or well along
 - know what we want to build
 - know how to build "hard parts" (prototypes completed or designed)
 - ready to design and cost most components (\Rightarrow ready to begin CDR)
- If aim to begin CDR at the end of R&D work, it should take \approx 2 years
 - implies "prying loose" significant engineering support early
- This aggressive schedule requires an augmented funding level
 - HEPAP endorsement to funding agencies and Laboratory management is needed to maintain our momentum

- R&D activities fall into four main categories
 - simulations and theory (Organizer: Jonathan Wurtele, UCB/LBNL)
 - targetry experiment (E951 at BNL) to demonstrate technical feasibility of key concepts (Organizer: Kirk McDonald, Princeton U.)
 - cooling experiment (MUCOOL) to demonstrate feasibility of required components and cooling effects (Organizer: Steve Geer, Fermilab)
 - special hardware components development, e.g.,
 - 200 MHz SC RF cavities for acceleration section (JLab, Cornell)
 - induction linac with internal SC solenoid for phase rotation (LBNL)
 - low-frequency, high gradient cavity and power source for proton driver (Fermilab, BNL)
 - 20 T SC solenoid system (NHMFL)
- Significant effort also invested in Feasibility Study activities, drawing other groups into the R&D program



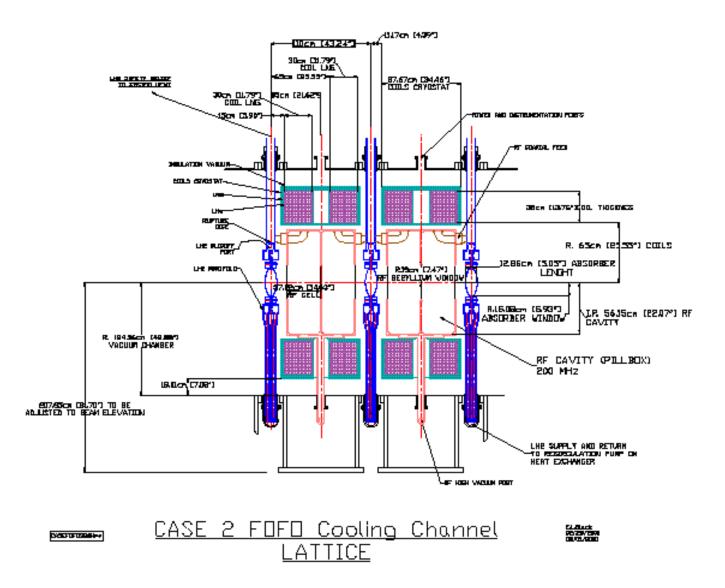
- Targetry goals (5-year)
 - demonstrate performance of 1-MW target in high-field solenoid
 - measure pion and neutron yields to benchmark code
 - demonstrate lifetime of target (Hg jet and solid)
- R&D activities
 - complete A3 beam line at BNL [FY00]
 - thermal calculations to assess mechanical behavior of target [FY00]
 - component development for experiment [20-T pulsed solenoid, 70 MHz high-gradient RF cavity] [FY01]
 - initial solid-target beam test [FY01]
 - test of Hg-jet in high magnetic field at NHMFL [FY01]
 - complete high intensity proton beam tests (10¹⁴ ppp) [FY02]

• Targetry experimental setup (BNL)



- MUCOOL goals (5-year)
 - create FNAL muon test beam facility (need MCOG buy-in + Lab support)
 - build component prototypes and bench test complete cooling cell
 - define, realistically simulate, carry out phased experiment ultimately showing significant cooling (ideally 2x emittance reduction)
 - assume initial portion of channel (\Rightarrow 201 MHz cavities, big solenoid)
 - verify multiple scattering and energy straggling estimates, test one cell, then replicate
- MUCOOL activities
 - 805 MHz RF
 - high-power pillbox cavity (multipactor; Be performance) [FY00]
 - test solenoid [FY00]
 - high-power open cell cavity (high gradient performance) [FY00]

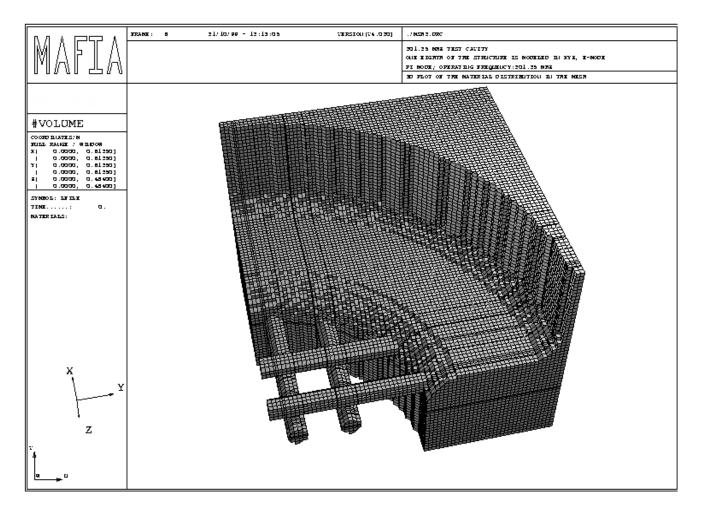
- 201 MHz RF
 - high-power cavity suitable for cooling experiment [FY01]
 - Be windows and gridded cell being studied [choose FY00]
 - o solenoid (≈4 T) [test June '01]
 - high-power klystron or other power source [FY01]
- test prototype LH₂ absorber with beam [FY01]



R&D Activities and Plans

BERKELEY LAB

IIIÌ

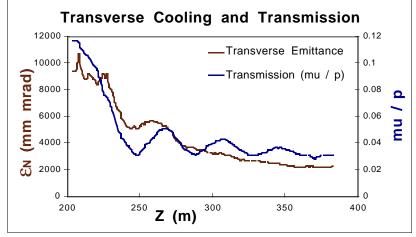


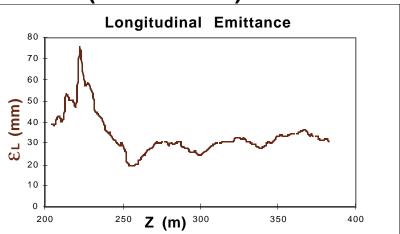
• Gridded cavity model

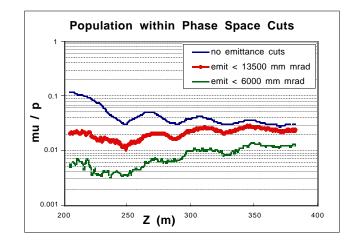
• Be window thermal testing

• Be window ready for low-power RF testing

• Low-power Be window test cavity at LBNL



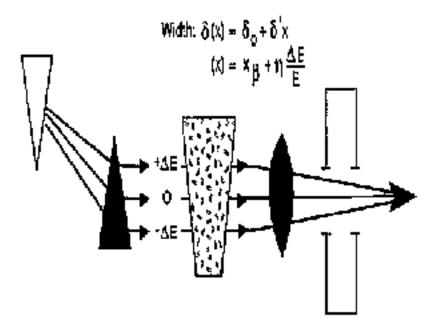

- Simulation goals (5-year)
 - complete end-to-end simulations, including effects of errors
 - Target/Capture, Front End, Acceleration, Storage Ring
 - develop concept for emittance exchange (longitudinal \leftrightarrow transverse)
- Simulation/theory activities
 - completed front-end solution with/without initial phase rotation
 - still to be optimized in terms of performance
 - study front-end error sensitivities [December '00]
 - study effects that might limit high-intensity in proton driver [FY00]
 - have emittance exchange workshop [Fall '00]
 - extend particle simulations through acceleration system [FY01]
 - complete storage ring design [FY01]



• Simulation beginning from induction linac (175 MHz RF)

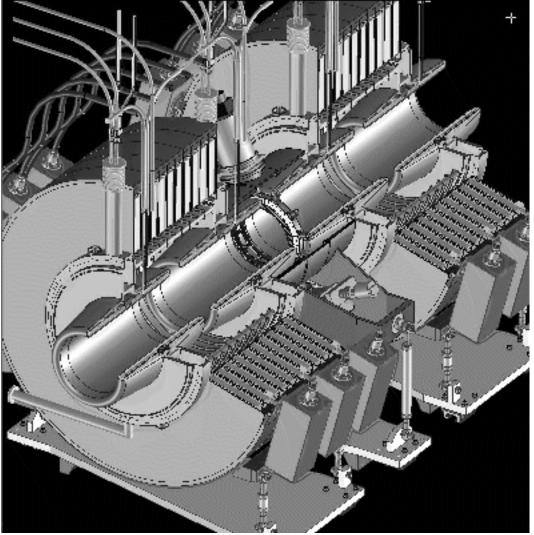
Lattice Properties:

	Peak Field on Axis	3.4 T					
	Peak Field at Coils	12 T					
	Current Density	132 A/mm2					
	LH length	12.6 cm> 13.2 cm					
	LH radius	15 cm> 10 cm					
	AI wall thickness	400 μ> 200 μ					
	Be window thickness	125 µ					
	Be window radius	19 cm					
	RF	175 MHz, 14 MV/m					
tal transmission, 0.03 mu/p at 2100 mm mrad							
ithin 6000 mm mrad cut, 0.014 mu/p							
omentum cut, 0.15 < Pz < 0.25 GeV/c							


to

wi m

• Schematic view of emittance exchange



- Component development goals (5-year)
 - demonstrate high-gradient 200 MHz SCRF cavity (acceleration)
 - demonstrate induction linac cell with internal SC solenoid operating at 2 MV/m (phase rotation)
 - demonstrate realistic pulser system to drive it
 - demonstrate high-gradient, low frequency RF cavity for proton driver
 - identify and demonstrate other critical technologies
- Component development activities
 - build and test prototype induction linac + solenoid module [FY01]
 - design and test 200- and 400-MHz SCRF cavities [FY02]
 - identify storage ring components needing R&D and/or prototyping, e.g., superconducting magnets [FY02]

• Induction linac cell with internal SC solenoid

• FY00 funding distribution

Institution	MUCOOL Expt. & Generic Studies		SALARY	RESERVE	TOTAL (\$K)
BNL		1818			1818
FNAL	1229		90		1319
LBNL	438	75		15	528
ANL	25	80	200		305
IIT	157				157
Mississippi	68				68
Princeton	80	100	60		240
UCB			120		120
UCLA	50		80		130
TOTAL (\$K)	2047	2073	550	15	4685

- Anticipated R&D funding
 - in process of refining costs and schedules for 5-year period (evaluation not complete)

	Collaboration (\$M)		Base Program (\$M)
FY99	2.2		2.8
FY00	4.7		≈ 5
FY01		≈16	
FY02		≈ 22	
FY03		≈32	
FY04		≈32	

- Breakdown (anticipate both DOE and NSF contributions)
 - Targetry: \$2–5M/yr
 - Cooling: $$2 \rightarrow 20M/yr$
 - Simulations: \$1–2M/yr
 - Components: $2 \rightarrow 5M/yr$

- MC has made good progress in R&D activities and feasibility studies aimed at initial goal of vF
 - hardware is being built and tested!
- *MC*, MCOG, sponsoring Labs, funding agencies working together to maintain focused, well-managed R&D program (internationally coordinated)
- Must get long lead time items under way
 - muon beam test facility at FNAL
 - high-power RF sources for MUCOOL experiment
 - significant "up-front" costs for industrial development
- Need aggressive program of component development
 - SC solenoid, SCRF cavity, induction linac module,...are expensive
- We hope HEPAP helps make this a priority with funding agencies
- More support (\$) needed to make R&D progress in a timely way