
Apparent Emittance Growth from Weak Relativistic Effects

Consider a beam in a drift region with zero transverse emittance. Then

for an initial distribution centered about z = 0, pz = pR where pR is also

the reference momentum,
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Expanding in u ≡ (pz − pR)/mc, we have
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where z = z0 at t = 0 and γ2R = 1 + p2R/m

2c2.

Look at first corrections to longitudinal emittance: take ε2L to order

σ6, second order moments to order σ4 and first order moments to order σ2.

Clearly, < pz >= pR and < p2z >= p2R + σ2
p, because momentum is a

constant of the motion.

Using Liouville theorem, distribution function F (z, pz) = F (z0, pz) is

also a constant of the motion, so

< G(z, pz) >t=< G(z0 + t∆v, pz) >0 .



Thus, using < z0 >= 0, < z20 >= σ2
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Here we have taken advantage of the fact that ∆v is independent of z0, so

there are no hidden cross terms, and also set < z30 >=< u3 >= 0.

To this order,
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so the determinant of the 2D covariant matrix up to order σ6 is
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For a gaussian beam, < u4 >= 3 < u2 >2 and the emittance growth is

given by
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or in terms of distance travelled
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It is apparent that for either very relativistic or very unrelativistic

beams, this effect becomes small. For a water bag model, the only difference

is that < u4 >= 2 < u2 >2, so the factor
√

2/3 is replaced by 2/3.

A more general form for the moments, without trying to simplify is
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still grows quadratically in time.


