Apparent Emittance Growth from Weak Relativistic Effects

Consider a beam in a drift region with zero transverse emittance. Then for an initial distribution centered about $z=0, p_{z}=p_{R}$ where p_{R} is also the reference momentum,

$$
\begin{gathered}
\frac{d p_{z}}{d t}=0 \\
\frac{d z}{d t}=v-v_{R}=c\left[f\left(p_{z} / m c\right)-f\left(p_{R} / m c\right)\right]
\end{gathered}
$$

where

$$
f(x)=\frac{x}{\sqrt{1+x^{2}}}
$$

Expanding in $u \equiv\left(p_{z}-p_{R}\right) / m c$, we have

$$
\begin{aligned}
z= & z_{0}+t \Delta v= \\
& z_{0}+\frac{c t u}{\gamma_{R}^{3}}\left[1-u \frac{3 p_{R}}{2 m c \gamma_{R}^{2}}+u^{2} \frac{1}{2 \gamma_{R}^{4}}\left(4 \frac{p_{R}^{2}}{m^{2} c^{2}}-1\right)\right. \\
& \left.+u^{3} \frac{p_{R}}{8 m c \gamma_{R}^{6}}\left(11-\frac{24 p_{R}^{2}}{m^{2} c^{2}}\right)+\ldots\right]
\end{aligned}
$$

where $z=z_{0}$ at $t=0$ and $\gamma_{R}^{2}=1+p_{R}^{2} / m^{2} c^{2}$.
Look at first corrections to longitudinal emittance: take ϵ_{L}^{2} to order σ^{6}, second order moments to order σ^{4} and first order moments to order σ^{2}.

Clearly, $\left\langle p_{z}\right\rangle=p_{R}$ and $\left\langle p_{z}^{2}\right\rangle=p_{R}^{2}+\sigma_{p}^{2}$, because momentum is a constant of the motion.

Using Liouville theorem, distribution function $F\left(z, p_{z}\right)=F\left(z_{0}, p_{z}\right)$ is also a constant of the motion, so

$$
<G\left(z, p_{z}\right)>_{t}=<G\left(z_{0}+t \Delta v, p_{z}\right)>_{0} .
$$

Thus, using $\left\langle z_{0}\right\rangle=0,\left\langle z_{0}^{2}\right\rangle=\sigma_{z}^{2},\langle u\rangle=0$ and $\left\langle u^{2}\right\rangle=\sigma_{p}^{2} / m^{2} c^{2}$, we have

$$
\begin{aligned}
& <z>=<z_{0}>+<t \Delta v>=-\frac{c t}{\gamma_{R}^{3}} \frac{\sigma_{p}^{2}}{m^{2} c^{2}} \frac{3 p_{R}}{2 m c \gamma_{R}^{2}}+\ldots \\
& <z^{2}>=<z_{0}^{2}>+2<z_{0} t \Delta v>+<t^{2}(\Delta v)^{2}> \\
& =\sigma_{z}^{2}+\frac{c^{2} t^{2}}{\gamma_{R}^{6}}\left[\frac{\sigma_{p}^{2}}{m^{2} c^{2}}+<u^{4}>\frac{1}{\gamma_{R}^{4}}\left(\frac{25 p_{R}^{2}}{4 m^{2} c^{2}}-1\right)+\ldots\right] \\
& <p_{z} z>-<p_{z}><z>=<\left(p_{z}-p_{0}\right) z>=m c<u z> \\
& =\frac{m c^{2} t}{\gamma_{R}^{3}}\left[\frac{\sigma_{p}^{2}}{m^{2} c^{2}}+<u^{4}>\frac{1}{2 \gamma_{R}^{4}}\left(4 \frac{p_{R}^{2}}{m^{2} c^{2}}-1\right)+\ldots\right]
\end{aligned}
$$

Here we have taken advantage of the fact that Δv is independent of z_{0}, so there are no hidden cross terms, and also set $\left\langle z_{0}^{3}\right\rangle=\left\langle u^{3}\right\rangle=0$.

To this order,

$$
\begin{aligned}
<z^{2}>-<z>^{2}= & \sigma_{z}^{2}+\frac{c^{2} t^{2}}{\gamma_{R}^{6}}\left[\frac{\sigma_{p}^{2}}{m^{2} c^{2}}\right. \\
& \left.+<u^{4}>\frac{1}{\gamma_{R}^{4}}\left(\frac{25 p_{R}^{2}}{4 m^{2} c^{2}}-1\right)-\frac{\sigma_{p}^{4}}{m^{4} c^{4}} \frac{9 p_{R}^{2}}{4 m^{2} c^{2} \gamma_{R}^{4}}\right]
\end{aligned}
$$

so the determinant of the 2 D covariant matrix up to order σ^{6} is

$$
\epsilon_{L}^{2}=\sigma_{p}^{2}\left[\sigma_{z}^{2}+\frac{9 c^{2} t^{2} p_{R}^{2}}{4 m^{2} c^{2} \gamma_{R}^{10}}\left(<u^{4}>-\frac{\sigma_{p}^{4}}{m^{4} c^{4}}\right)\right]
$$

For a gaussian beam, $<u^{4}>=3<u^{2}>^{2}$ and the emittance growth is given by

$$
\epsilon_{L}^{2}=\sigma_{p}^{2} \sigma_{z}^{2}\left[1+\frac{t^{2}}{\tau^{2}}\right]
$$

where

$$
\tau=\frac{\sqrt{2}}{3} \frac{m^{2} c^{2} \gamma_{R}^{4} \sigma_{z}}{v_{R} \sigma_{p}^{2}}
$$

or in terms of distance travelled

$$
v_{R} \tau=\frac{\sqrt{2}}{3} \frac{\gamma_{R}^{2}}{\beta_{R}^{2}} \frac{\sigma_{z} p_{R}^{2}}{\sigma_{p}^{2}}
$$

It is apparent that for either very relativistic or very unrelativistic beams, this effect becomes small. For a water bag model, the only difference is that $\left.\left\langle u^{4}\right\rangle=2<u^{2}\right\rangle^{2}$, so the factor $\sqrt{2} / 3$ is replaced by $2 / 3$.

A more general form for the moments, without trying to simplify is

$$
\begin{gathered}
<p>=p_{R}, \quad<z>=\frac{s}{v_{R}}\left(<v(p)>-v_{R}\right) \\
<p^{2}>-<p>^{2}=\sigma_{p}^{2} \\
<z^{2}>-<z>^{2}=\sigma_{z}^{2}+\frac{s^{2}}{v_{R}^{2}}\left[<v^{2}(p)>-<v(p)>^{2}\right]+\frac{2 s}{v_{R}}<z_{0} v(p)> \\
<p z>-<p><z>=<p z_{0}>+\frac{s}{v_{R}}\left[<p v(p)>-p_{R}<v(p)>\right]
\end{gathered}
$$

If $\left.\left\langle z_{0} p\right\rangle=<z_{0} v\right\rangle=0$, then

$$
\begin{aligned}
\epsilon_{L}^{2}=\sigma_{p}^{2} \sigma_{z 0}^{2}+\frac{s^{2}}{v_{R}^{2}}[& \sigma_{p}^{2}\left(<v^{2}(p)>-<v(p)>^{2}\right) \\
& \left.-\left(<p v(p)>-p_{R}<v(p)>\right)^{2}\right]
\end{aligned}
$$

still grows quadratically in time.

