<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#ffffff" text="#000000">
    <font face="Arial" size="2"></font><font face="Arial" size="2">Kirk,
      <br>
      sorry, but your statement below referring my name is not correct:<br>
      <br>
      "Give versions of Swann's theorem for rms emittance calculations.&nbsp;
      Clarify whether the theorem holds only for 6D emittance, or for 4D
      and 2D subemittances as well.</font>
    <div><font face="Arial" size="2">Alexander Shemyakin claims that
        this has been done for the 4D transverse rms emittance for beams
        inside an&nbsp;ideal DC solenoids, but perhaps not for general
        electromagnetic fields.&nbsp;&nbsp; <i>Apparently, Alexey Burov does not
          believe the theorem holds even for this special case."<br>
          <br>
        </i>As I wrote in my very first message to you, the partial
        emittances, calculated with mechanical sigma-matrix, are not
        correct. But their product, the total emittance, is correct. For
        the e-beam inside the solenoid, the longitudinal emittance is
        decoupled, so the total emittance is 4D. Thus, 4D mechanical
        emittance is the same as canonical. It is clearly written in the
        Lebedev-Bogacz paper, in particular. A. Shemyakin also correctly
        mentioned, that there is no disagreemnt between him and me.<br>
        <br>
        Alexey.<br>
      </font></div>
    <br>
    On 3/12/11 8:03 PM, Kirk T McDonald wrote:
    <blockquote cite="mid:CBCA4B1192234A658030B6355F2C710D@mumu24"
      type="cite">
      <meta content="text/html; charset=ISO-8859-1"
        http-equiv="Content-Type">
      <meta name="GENERATOR" content="MSHTML 8.00.6001.19019">
      <div><font face="Arial" size="2">Alex,</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">Thanks for that useful
          clarification.&nbsp; I now agree that Rob's slide 16 is correct.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">This leads to several other
          comments.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">If you find this tedious, but are
          willing to consider some of the argument, skip to item 7.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">1.&nbsp; With H = E_mech + q V,</font></div>
      <div><font face="Arial" size="2">the partial derivative on the
          diagonal of the Jacobian of the transformation from </font></div>
      <div><font face="Arial" size="2">canonical coordinates</font></div>
      <div><font face="Arial" size="2">(x, y, t, p_mech_x+qA_x/c,
          p_mech_y_qA_y/c, H=E_mech+qV)</font></div>
      <div><font face="Arial" size="2">to&nbsp;(noncanonical) coordinates</font></div>
      <div><font face="Arial" size="2">(x, y, t, p_mech,x, p_mech,y,
          E_mech)</font></div>
      <div><font face="Arial" size="2">is</font></div>
      <div><font face="Arial" size="2">partial H / partial E_mech = 1.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">Hence, the determinant of the
          Jacobian is 1, which means that the phase volume is the same
          whether or not one includes the potentials A and V in the
          calculation, using either t or z as the independent
          variable.&nbsp;&nbsp; This&nbsp;a the generalization of Swann's "theorem".</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">So, in principle, we are free to
          leave out all consideration of the potentials in calculation
          of phase volume, and its approximate representation by
          emittance!</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">There remains the vexing issue of
          which potentials, I.e., which gauge, to use such that the
          numerical value of the calculated emittance is the best
          representation of the underlying phase volume.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">2.&nbsp; If we choose to include the
          potentials A and V in the calculation, we must do so
          consistently.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">However, we can give a corollary
          to Swann's theorem which indicates that in principle we have a
          lot of flexibility.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">For example, if we decide to
          change from the canonical coordinates</font></div>
      <div>
        <div><font face="Arial" size="2">(x, y, t, p_mech_x+qA_x/c,
            p_mech_y+qA_y/c, H=E_mech+qV)</font></div>
        <div><font face="Arial" size="2">to</font></div>
        <div>
          <div><font face="Arial" size="2">(x, y, t, p_mech_x+qA_x/c,
              p_mech_y+qA_y/c, E_mech)</font></div>
          <div><font face="Arial" size="2">or to</font></div>
          <div>
            <div><font face="Arial" size="2">(x, y, t, p_mech_x+qA_x/c,
                p_mech_y, H=E_mech+qV)</font></div>
            <div><font face="Arial" size="2">or to</font></div>
            <div>
              <div><font face="Arial" size="2">(x, y, t, p_mech_x,
                  p_mech_y+qA_y/c, H=E_mech+qV)</font></div>
              <div><font face="Arial" size="2">or to</font></div>
              <div>
                <div><font face="Arial" size="2">(x, y, t,
                    p_mech_x+qA_x/c, p_mech_y, E_mech)</font></div>
                <div><font face="Arial" size="2">or to</font></div>
                <div>
                  <div><font face="Arial" size="2">(x, y, t, p_mech_x,
                      p_mech_y+qA_y/c, E_mech)</font></div>
                  <div><font face="Arial" size="2">or to</font></div>
                  <div>
                    <div><font face="Arial" size="2">(x, y, t, p_mech_x,
                        p_mech_y, H=E_mech+qV),</font></div>
                    <div><font face="Arial" size="2">in every case the
                        determinant of the Jacobian is 1, so phase
                        volume is invariant under all 6 of
                        these&nbsp;transformations [as well as under the
                        original transformation to coordinates</font></div>
                    <div><font face="Arial" size="2">(x, y, t, p_mech,x,
                        p_mech,y, E_mech) ].</font></div>
                    <div>&nbsp;</div>
                    <div><font face="Arial" size="2">[Similarly, if we
                        use t as the independent variable, we obtain 7
                        versions of Swann's theorem, for a total of 14
                        versions so far.]</font></div>
                    <div>&nbsp;</div>
                    <div><font face="Arial" size="2">It is my
                        understanding the ICOOL/ECALC presently uses the
                        first of these transformations, I.e., it uses
                        coordinates</font></div>
                    <div><font face="Arial" size="2">
                        <div><font face="Arial" size="2">(x, y, t,
                            p_mech_x+qA_x/c, p_mech_y+qA_y/c, E_mech)</font></div>
                      </font></div>
                  </div>
                </div>
              </div>
            </div>
          </div>
        </div>
      </div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">[Rick Fernow: Can you comment on
          this?]</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">It now seems to me that this is
          actually OK in principle (although perhaps a somewhat "ugly"
          transformation)</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">3.&nbsp;&nbsp; If we have potentials due to
          several different charge/current sources, I believe that it is
          OK to use different gauges for the different sources, if this
          proves to be computationally convenient.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">It is less clear to me that we
          have the freedom to include the potentials from some sources,
          but to leave then out for others.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">4.&nbsp; There is a special gauge
          called the Hamiltonian gauge in which the scalar potential is
          everywhere zero.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">See sec. 8 of </font></div>
      <div><font face="Arial" size="2"><a moz-do-not-send="true"
            title="http://puhep1.princeton.edu/~mcdonald/examples/EM/jackson_ajp_70_917_02.pdf
CTRL
            + Click to follow link"
href="http://puhep1.princeton.edu/%7Emcdonald/examples/EM/jackson_ajp_70_917_02.pdf">http://puhep1.princeton.edu/~mcdonald/examples/EM/jackson_ajp_70_917_02.pdf</a></font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">user: archive</font></div>
      <div><font face="Arial" size="2">pass alpha137</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">However, for time-dependent
          fields it is not so easy to calculate the vector potential in
          this gauge.&nbsp;&nbsp; So, I doubt that we will use it much.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">[For static electric fields, V =
          0 and A = -&nbsp;E t.&nbsp;&nbsp;&nbsp; For static magnetic fields the vector
          potential is the same as the Coulomb gauge potential (which is
          the same as the Lorenz gauge potential for this case).]</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">5.&nbsp; If we include the potentials
          in our emittance calculations, we will have to learn to live
          with the fact that the potentials in most gauges can be
          nonzero in regions where the fields E and B are zero.&nbsp;&nbsp; In
          these regions, where the particle motion is unaffected by E
          and B, the emittance calculation will nonetheless depend on
          the potentials.&nbsp;&nbsp; In principle, this should make no difference
          -- as we should get the same value for the emittance even if
          we neglect the potentials altogether.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">6.&nbsp; Juan Gallardo points out that
          if the E and B fields are known, the simplest calculation of
          corresponding potentials is in the so-called Poincare gauge.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">See sec. 9 of Jackson's paper
          linked above.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">In this calculation, the
          potentials depend on the E and B fields only along a line from
          the origin to the point in question.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">This means that the value of the
          potentials depends on the choice of the origin.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">If the origin is in a region of
          nonzero E or B field, we immediately see that the potentials
          in the Poincare gauge are nonzero throughout all space.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">Juan and I have been making a few
          toy analytic calculations of potentials in the Poincare gauge
          to get some experience as to how it works:</font></div>
      <div><font face="Arial" size="2"><a moz-do-not-send="true"
            title="http://puhep1.princeton.edu/~mcdonald/examples/cavity.pdf
            CTRL + Click to follow link"
            href="http://puhep1.princeton.edu/%7Emcdonald/examples/cavity.pdf">http://puhep1.princeton.edu/~mcdonald/examples/cavity.pdf</a></font></div>
      <div><font face="Arial" size="2"><a moz-do-not-send="true"
            title="http://puhep1.princeton.edu/~mcdonald/examples/solpot.pdf
            CTRL + Click to follow link"
            href="http://puhep1.princeton.edu/%7Emcdonald/examples/solpot.pdf">http://puhep1.princeton.edu/~mcdonald/examples/solpot.pdf</a></font></div>
      <div><font face="Arial" size="2"><a moz-do-not-send="true"
            title="http://puhep1.princeton.edu/~mcdonald/examples/cylindrical.pdf
            CTRL + Click to follow link"
            href="http://puhep1.princeton.edu/%7Emcdonald/examples/cylindrical.pdf">http://puhep1.princeton.edu/~mcdonald/examples/cylindrical.pdf</a></font></div>
      <div><font face="Arial" size="2"><a moz-do-not-send="true"
            title="http://puhep1.princeton.edu/~mcdonald/examples/axial.pdf
            CTRL + Click to follow link"
            href="http://puhep1.princeton.edu/%7Emcdonald/examples/axial.pdf">http://puhep1.princeton.edu/~mcdonald/examples/axial.pdf</a></font></div>
      <div><font face="Arial" size="2">[This is a work in process.&nbsp;
          These notes are still being updated.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">A&nbsp;price of using the Poincare
          gauge to simplify the calculation of the potentials will be
          that they must be calculated over the entire volume where our
          beams go.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">The emittance calculation in the
          final cooling section must include the vector potential from
          the magnets back at the target station, etc.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">I believe this complexity can be
          mitigated by choosing different origins to calculate the
          potentials from different field regions.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">7.&nbsp; All this discussion
          emphasizes how it would be simpler if we just omit the
          potentials when calculating the emittance.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">Swann's "theorem" shows that this
          is OK for phase volume, but it may not be OK for calculations
          of rms emittance.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">Challenge:&nbsp; Give versions of
          Swann's theorem for rms emittance calculations.&nbsp; Clarify
          whether the theorem holds only for 6D emittance, or for 4D and
          2D subemittances as well.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">Alexander Shemyakin claims that
          this has been done for the 4D transverse rms emittance for
          beams inside an&nbsp;ideal DC solenoids, but perhaps not for
          general electromagnetic fields.&nbsp;&nbsp; Apparently, Alexey Burov
          does not believe the theorem holds even for this special case.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">However, I get the impression
          from comments by Alex Dragt that rms emittances, are not, in
          general, invariants with respect to the independent variable
          of the Hamiltonian, be that either t or z.&nbsp;&nbsp; So it may well be
          that rms emittances are not invariant under gauge
          transformations, or under transformations from canonical to
          noncanonical variables (I.e., neglecting the potentials).</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">Worry:&nbsp; If rms emittances are not
          gauge invariant, then we have a whole new class of issues to
          deal with.</font></div>
      <div>&nbsp;</div>
      <div><font face="Arial" size="2">--Kirk </font></div>
      <div>&nbsp;</div>
      <div style="font: 10pt Tahoma;">
        <div><br>
        </div>
        <div style="background: none repeat scroll 0% 0% rgb(245, 245,
          245);">
          <div style=""><b>From:</b> <a moz-do-not-send="true"
              title="mailto:dragtnb@comcast.net
              CTRL + Click to follow link"
              href="mailto:dragtnb@comcast.net">alex dragt</a> </div>
          <div><b>Sent:</b> Saturday, March 12, 2011 11:52 AM</div>
          <div><b>To:</b> <a moz-do-not-send="true"
              title="mailto:kirkmcd@Princeton.EDU
              CTRL + Click to follow link"
              href="mailto:kirkmcd@Princeton.EDU">Kirk T McDonald</a> </div>
          <div><b>Cc:</b> <a moz-do-not-send="true"
              title="mailto:map-l@lists.bnl.gov
              CTRL + Click to follow link"
              href="mailto:map-l@lists.bnl.gov">MAP List</a> ; <a
              moz-do-not-send="true" title="mailto:rdryne@lbl.gov
              CTRL + Click to follow link" href="mailto:rdryne@lbl.gov">Robert
              D Ryne</a> ; <a moz-do-not-send="true"
              title="mailto:dragtnb@comcast.net
              CTRL + Click to follow link"
              href="mailto:dragtnb@comcast.net">alex dragt</a> </div>
          <div><b>Subject:</b> Re: [MAP] Use of x,y,t as Hamiltonian
            coordinates.</div>
        </div>
      </div>
      <div><br>
      </div>
      <font class="Apple-style-span" size="5"><span style="font-size:
          18px;" class="Apple-style-span">Dear Kirk, &nbsp;</span></font>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span"><br>
          </span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span">&nbsp;&nbsp; &nbsp; If
            you employ (1.5.29) and (1.5.30) in my book, you will find
            that</span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span"><br>
          </span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span">H=\gamma
            mc^2+q\psi.</span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span"><br>
          </span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span">Then. from
            (1.6.5), it follows that</span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span"><br>
          </span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span">p_t=-H=-\gamma
            mc^2-q\psi,</span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span"><br>
          </span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span">in
            agreement with Rob's slide 16.</span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span"><br>
          </span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span">Best,</span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span"><br>
          </span></font></div>
      <div><font class="Apple-style-span" size="5"><span
            style="font-size: 18px;" class="Apple-style-span">Alex<br>
          </span></font>
        <div>&nbsp;</div>
        <div>If you&nbsp;</div>
        <div><br>
          <div>
            <div>On Mar 11, 2011, at 8:10 PM, Kirk T McDonald wrote:</div>
            <br class="Apple-interchange-newline">
            <blockquote type="cite">
              <div style="padding-left: 10px; padding-right: 10px;
                word-wrap: break-word; padding-top: 15px;"
                id="MailContainerBody" name="Compose message area"
                leftmargin="0" topmargin="0" bgcolor="#ffffff"
                canvastabstop="true">
                <div><font face="Arial" size="2">Rob,</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">Thanks for this
                    comment.</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">Your slide 16 seems to
                    imply that the canonical momentum associated with
                    coordinate t, when using (x,y,t) as coordinates, is</font></div>
                <div><font face="Arial" size="2">p_t = - (E_mech + q V).</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">This does not quite
                    match what I infer from Alex Dragt that</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">p_t = - H</font></div>
                <div><font face="Arial" size="2">= - { sqrt[ m^2 c^4 +
                    (p_mech - q A&nbsp;/ c)^2 ]&nbsp;+ q V }</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">How did you arrive at
                    your simplification?</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">Your result matches
                    Dragt's if the vector potential is zero.....</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">Are you saying that we
                    can ignore the vector potential, but not the scalar
                    potential?</font></div>
                <div>&nbsp;</div>
                <div><font face="Arial" size="2">--Kirk</font></div>
                <div style="font: 10pt Tahoma;">
                  <div><br>
                  </div>
                  <div style="background: none repeat scroll 0% 0%
                    rgb(245, 245, 245);">
                    <div style=""><b>From:</b> <a
                        moz-do-not-send="true"
                        title="mailto:rdryne@lbl.gov
                        CTRL + Click to follow link"
                        href="mailto:rdryne@lbl.gov">Robert D Ryne</a> </div>
                    <div><b>Sent:</b> Saturday, March 12, 2011 12:07 AM</div>
                    <div><b>To:</b> <a moz-do-not-send="true"
                        title="mailto:kirkmcd@Princeton.EDU
                        CTRL + Click to follow link"
                        href="mailto:kirkmcd@Princeton.EDU">Kirk T
                        McDonald</a> </div>
                    <div><b>Cc:</b> <a moz-do-not-send="true"
                        title="mailto:dragtnb@comcast.net
                        CTRL + Click to follow link"
                        href="mailto:dragtnb@comcast.net">alex dragt</a>
                      ; <a moz-do-not-send="true"
                        title="mailto:map-l@lists.bnl.gov
                        CTRL + Click to follow link"
                        href="mailto:map-l@lists.bnl.gov">MAP List</a> </div>
                    <div><b>Subject:</b> Re: [MAP] Use of x,y,t as
                      Hamiltonian coordinates.</div>
                  </div>
                </div>
                <div><br>
                </div>
                <span style="font-size: 14px;" class="Apple-style-span">Kirk,</span>
                <div style="font-size: 14px;"><br>
                </div>
                <div style="font-size: 14px;">The 6-vector of canonical
                  variables is shown on slide 16 of my presentation at
                  the MAP meeting. These are the variables that should
                  be used for eigen-emittance calculations. Of course
                  this happens "for free" in a code that uses canonical
                  variables. When I calculate eigen-emittances from a
                  non-canonical code, the diagnostic subroutine does the
                  conversion to canonical variables.</div>
                <div style="font-size: 14px;"><br>
                </div>
                <div style="font-size: 14px;">Rob</div>
                <div style="font-size: 16px;"><span style="font-size:
                    medium;" class="Apple-style-span"><font
                      class="Apple-style-span" size="4"><span
                        style="font-size: 16px;"
                        class="Apple-style-span"><br>
                      </span></font></span></div>
                <div><br>
                </div>
              </div>
            </blockquote>
          </div>
          <br>
        </div>
      </div>
      <pre wrap="">
<fieldset class="mimeAttachmentHeader"></fieldset>
_______________________________________________
MAP-l mailing list
<a class="moz-txt-link-abbreviated" href="mailto:MAP-l@lists.bnl.gov">MAP-l@lists.bnl.gov</a>
<a class="moz-txt-link-freetext" href="https://lists.bnl.gov/mailman/listinfo/map-l">https://lists.bnl.gov/mailman/listinfo/map-l</a>
</pre>
    </blockquote>
  </body>
</html>