<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
  <head>
    <meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#ffffff">
    Kirk, <br>
    <br>
    <font face="Arial" size="2"> epsilon1 and epsilon2 are called
      emittances,<font face="Arial"> </font></font>because they are
    emittances =<font size="2"> <big>phase volumes for two eigenvectors
        of the 4D matrix of beam second moments (sigma matrix).</big></font><big><font
        size="2"><big> </big></font></big>They are invariant under any
    symplectic transformations. <br>
    <br>
    You may convince yourself that this result is correct in a following
    numerical way: generate a numerical ensemble of electrons born at
    magnetized cathode, inside a solenoid. Propagate them along that
    solenoid, until they will come out, in a free space. Calculate
    sigma-matrix there, find its eigenvectors. In the basis of its
    eigenvectors, sigma-matrix is diagonal with 2 emittances on its main
    diagonal. See Eqs. (3.26, 3.27) of that paper. Indices 1 and 2
    relate to 2 eigenmodes of the sigma-matrix. Generally, they are not
    just x and y planar modes, because the beam state is x-y coupled. <br>
    <br>
    Alexey.<br>
    <br>
    On 3/10/2011 5:15 PM, Kirk T McDonald wrote:
    <blockquote cite="mid:98FEE0D2849743468CEB0449A30CF803@mumu30"
      type="cite">
      <meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
      <div dir="ltr">
        <div style="font-family: 'Arial'; color: rgb(0, 0, 0);
          font-size: 10pt;">
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">Alexey,</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">I understand your hope to “avoid
                long discussion”, as the Lededev/Bogacz paper is more or
                less incomprehensible to me.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">It is not clear why parameters
                epsilon1 and epsilon2 are called “emittances”, since
                they are not invariants.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">And, I don’t know what indices 1
                and 2 refer to.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">Etc.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">If Valery or Alex care to
                enlighten me, that would be most welcome.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">--Kirk</font></div>
          </div>
          <div>
            <div style="font: 10pt tahoma;">
              <div style="background: none repeat scroll 0% 0% rgb(245,
                245, 245);">
                <div style=""><b>From:</b> <a moz-do-not-send="true"
                    title="burov@fnal.gov" href="mailto:burov@fnal.gov">Alexey
                    Burov</a> </div>
                <div><b>Sent:</b> Thursday, March 10, 2011 6:02 PM</div>
                <div><b>To:</b> <a moz-do-not-send="true"
                    title="kirkmcd@Princeton.EDU"
                    href="mailto:kirkmcd@Princeton.EDU">Kirk T McDonald</a>
                </div>
                <div><b>Cc:</b> <a moz-do-not-send="true"
                    title="map-l@lists.bnl.gov"
                    href="mailto:map-l@lists.bnl.gov">map-l@lists.bnl.gov</a>
                </div>
                <div><b>Subject:</b> Re: [MAP] Liouville's theorem and
                  electromagnetic fields</div>
              </div>
            </div>
            <div> </div>
          </div>
          <div style="font-style: normal; display: inline; font-family:
            'Calibri'; color: rgb(0, 0, 0); font-size: small;
            font-weight: normal; text-decoration: none;">Kirk,<br>
            <br>
            they are not invariant. To avoid long discussion here,
            please have a look at Lebedev-Bogacz paper:<br>
            <a moz-do-not-send="true" class="moz-txt-link-freetext"
href="http://iopscience.iop.org/1748-0221/5/10/P10010/pdf/1748-0221_5_10_P10010.pdf">http://iopscience.iop.org/1748-0221/5/10/P10010/pdf/1748-0221_5_10_P10010.pdf</a>,
            <br>
            the very end of it, pp. 21-23. You see that the 2 emittances
            of e-beam born at the magnetized cathode, \epsilon_1 and
            \epsilon_2 may differ by orders of magnitude. This is actual
            case for e-beam of our e-cooler.   <br>
            <br>
            Alexey.<br>
            <br>
            On 3/10/2011 4:42 PM, Kirk T McDonald wrote:
            <blockquote
              cite="mid:608291C1C4744041A10D5279278A9353@mumu30"
              type="cite">
              <div dir="ltr">
                <div style="font-family: 'Arial'; color: rgb(0, 0, 0);
                  font-size: 10pt;">
                  <div>Alexey,</div>
                  <div> </div>
                  <div>For the subspace (q,p) we have</div>
                  <div> </div>
                  <div>dq’ dp’ = J dq dp</div>
                  <div> </div>
                  <div>J = | dq’/dq  dq’/dp |</div>
                  <div>      | dp’/dq  dp’/dp |</div>
                  <div> </div>
                  <div>Suppose p = m v + A   (in units where e/c = 1)</div>
                  <div>and we transform</div>
                  <div>q’ = q</div>
                  <div>p’ = mv = p – A(q)</div>
                  <div> </div>
                  <div>Then the Jacobian is</div>
                  <div>J = |       1     0 |</div>
                  <div>      | –dA/dq  1 | = 1</div>
                  <div> </div>
                  <div>It looks to me like the partial phase volumes are
                    also invariant under the “transformation” of
                    neglecting the vector potential.</div>
                  <div> </div>
                  <div>--Kirk</div>
                  <div> </div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;">
                    <div style="font: 10pt tahoma;">
                      <div> </div>
                      <div style="background: none repeat scroll 0% 0%
                        rgb(245, 245, 245);">
                        <div><b>From:</b> <a title="burov@fnal.gov"
                            href="mailto:burov@fnal.gov"
                            moz-do-not-send="true">Alexey Burov</a> </div>
                        <div><b>Sent:</b> Thursday, March 10, 2011 5:33
                          PM</div>
                        <div><b>To:</b> <a title="map-l@lists.bnl.gov"
                            href="mailto:map-l@lists.bnl.gov"
                            moz-do-not-send="true">map-l@lists.bnl.gov</a>
                        </div>
                        <div><b>Subject:</b> Re: [MAP] Liouville's
                          theorem and electromagnetic fields</div>
                      </div>
                    </div>
                    <div> </div>
                  </div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;">One remark to Swann's paper:
                    <br>
                    His theorem relates to the total emittance, not to
                    the partial ones. Partial emittances are sensitive
                    to eA/c term. <br>
                    <br>
                    A possible way to get rid of eA/c inside solenoidal
                    structures is to make a fake 0-length edge of the
                    solenoid at a place where emittances are calculated;
                    kicks from the edge solenoidal fields have to be
                    taken into account, of course. <br>
                    <br>
                    Alexey. <br>
                    <br>
                    On 3/10/2011 4:09 PM, Kirk T McDonald wrote:
                    <blockquote
                      cite="mid:468B48A3C96B4BA3AA66387F9E650168@mumu30"
                      type="cite">
                      <div dir="ltr">
                        <div style="font-family: 'Arial'; color: rgb(0,
                          0, 0); font-size: 10pt;">
                          <div>Folks,</div>
                          <div> </div>
                          <div>There is a technical question as to how
                            we should be calculating emittance for beams
                            in electromagnetic fields.</div>
                          <div> </div>
                          <div>The formal theory of Liouville’s theorem
                            is clear that the invariant volume in phase
                            space is to be calculated with the canonical
                            momentum</div>
                          <div>gamma m v + e A / c</div>
                          <div>and not the mechanical momentum m v.</div>
                          <div> </div>
                          <div>This is awkward in two ways:</div>
                          <div>1.   We don’t always know the vector
                            potential of our fields</div>
                          <div>2.   The vector potential is subject to
                            gauge transformations, so canonical momentum
                            is not gauge invariant.</div>
                          <div> </div>
                          <div>The second issue is disconcerting in that
                            it suggests that phase-space volume, and
                            emittance, are not actually invariant  --
                            with respect to gauge transformations.</div>
                          <div> </div>
                          <div>Hence, it is useful to note a very old
                            paper,</div>
                          <div>W.F.G. Swann, Phys. Rev. 44, 233 (1933)</div>
                          <div>which shows that the phase-space volume
                            for a set of noninteracting particles is the
                            same whether or not the term e A / c is
                            included in the “momentum”.</div>
                          <div> </div>
                          <div>This result has the consequence that
                            phase-space volume (and emittance) is
                            actually gauge invariant – although the
                            location of a volume element in space space
                            is gauge dependent.</div>
                          <div> </div>
                          <div>---------------</div>
                          <div>This suggests that we could simply
                            calculate emittances based only on the
                            mechanical momentum, and avoid having to
                            worry about the accuracy of our model for
                            the vector potential.</div>
                          <div> </div>
                          <div>Of course, our calculations are actually
                            of rms emittance, which is a better
                            representation of the “ideal” emittance if
                            the phase-space volume is more “spherical”,
                            and not elongated/twisted.</div>
                          <div> </div>
                          <div>It could be that the shape of the
                            phase-space volume is better for rms
                            emittance calculation if the vector
                            potential, in some favored gauge, is
                            included in the calculation.....</div>
                          <div> </div>
                          <div>--Kirk</div>
                          <div> </div>
                          <div>PS  I have placed Swann’s paper as DocDB
                            560</div>
                          <div><a
                              title="http://nfmcc-docdb.fnal.gov:8080/cgi-bin/DocumentDatabase"
href="http://nfmcc-docdb.fnal.gov:8080/cgi-bin/DocumentDatabase"
                              moz-do-not-send="true">http://nfmcc-docdb.fnal.gov:8080/cgi-bin/DocumentDatabase</a></div>
                          <div>user = ionization pass = mucollider1</div>
                          <div> </div>
                          <div>See also the paper by Lemaitre that used
                            Liouville’s theorem for cosmic rays in the
                            Earth’s atmosphere (using mechanical
                            momentum).   This may well be the earliest
                            paper about particle beams and Liouville’s
                            theorem.</div>
                          <div> </div>
                          <div>PPS  Scott Berg notes that when one
                            evaluates emittance at a fixed plane in
                            space, rather than at a fixed time, it is
                            better to use the “longitudinal” coordinates
                            (E,t) rather than (P_z,z).</div>
                          <div> </div>
                          <div>Is there any written reference that
                            explains this “well known” fact?</div>
                          <div> </div>
                          <div>How is this prescription affected by
                            electromagnetic fields?</div>
                          <div> </div>
                          <div>The vector potential of even a simple rf
                            accelerating cavity has an A_z component
                            (which is zero on axis, but nonzero off it).</div>
                          <div><a
                              title="http://puhep1.princeton.edu/~mcdonald/examples/cylindrical.pdf"
href="http://puhep1.princeton.edu/%7Emcdonald/examples/cylindrical.pdf"
                              moz-do-not-send="true">http://puhep1.princeton.edu/~mcdonald/examples/cylindrical.pdf</a></div>
                          <div>Note that the vector potential is nonzero
                            outside the cavity, even though the E and B
                            fields are zero there!</div>
                          <div> </div>
                          <div>Do we know how to include A_z in our
                            longitudinal emittance calculations?</div>
                        </div>
                      </div>
                      <pre wrap=""><fieldset class="mimeAttachmentHeader"></fieldset>
_______________________________________________
MAP-l mailing list
<a class="moz-txt-link-abbreviated" href="mailto:MAP-l@lists.bnl.gov" moz-do-not-send="true">MAP-l@lists.bnl.gov</a>
<a class="moz-txt-link-freetext" href="https://lists.bnl.gov/mailman/listinfo/map-l" moz-do-not-send="true">https://lists.bnl.gov/mailman/listinfo/map-l</a>
</pre>
                    </blockquote>
                    <br>
                    <hr> _______________________________________________<br>
                    MAP-l mailing list<br>
                    <a moz-do-not-send="true"
                      class="moz-txt-link-abbreviated"
                      href="mailto:MAP-l@lists.bnl.gov">MAP-l@lists.bnl.gov</a><br>
                    <a moz-do-not-send="true"
                      class="moz-txt-link-freetext"
                      href="https://lists.bnl.gov/mailman/listinfo/map-l">https://lists.bnl.gov/mailman/listinfo/map-l</a><br>
                  </div>
                </div>
              </div>
            </blockquote>
            <br>
          </div>
        </div>
      </div>
    </blockquote>
    <br>
  </body>
</html>