<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
  <head>
    <meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#ffffff">
    Kirk, <br>
    <br>
    the first question in that business should be: what are
    sub-emittances for arbitrary coupled beam state? Correct answer is:
    they are diagonal elements of the sigma-matrix in a basis of its
    eigenvectors. These two (or 3 in 3D coupled case) values are
    invariant under any symplectic transformations - that is why they
    are so important. "Leaving the vector-potential out of the
    calculations" changes the partial emittances. This non-symplectic
    procedure is equivalent to neglect of a kick from solenoidal edge
    fields - which may easily lead to severe errors.  <br>
    <br>
    Alexey.<br>
    <br>
    On 3/10/2011 5:27 PM, Kirk T McDonald wrote:
    <blockquote cite="mid:9511C40A71744557AB0AABA7FFB821DE@mumu30"
      type="cite">
      <meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
      <div dir="ltr">
        <div style="font-family: 'Arial'; color: rgb(0, 0, 0);
          font-size: 10pt;">
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">Alexey,</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">A further comment is the Swann’s
                method does not show that “subemittances” are invariant
                in TIME, but it seems to show that they are invariant
                under leaving the vector potential out of their
                calculation.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">------------</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">Maybe Lebedev and Bogacz
                considered an example in which two “subemittances”
                evolved with time such that one increased and the other
                decreased, whereby the “total” emittance remained
                invariant.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">This in no way precludes that
                these subemittances would have the same (time-dependent)
                values if the vector potential were ignored in their
                calculation.</font></div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"> </div>
          </div>
          <div>
            <div style="font-style: normal; display: inline;
              font-family: 'Calibri'; color: rgb(0, 0, 0); font-size:
              small; font-weight: normal; text-decoration: none;"><font
                face="Arial" size="2">--Kirk</font></div>
          </div>
          <div>
            <div style="font: 10pt tahoma;">
              <div style="background: none repeat scroll 0% 0% rgb(245,
                245, 245);">
                <div style=""><b>From:</b> <a moz-do-not-send="true"
                    title="kirkmcd@Princeton.EDU"
                    href="mailto:kirkmcd@Princeton.EDU">Kirk T McDonald</a>
                </div>
                <div><b>Sent:</b> Thursday, March 10, 2011 6:15 PM</div>
                <div><b>To:</b> <a moz-do-not-send="true"
                    title="burov@fnal.gov" href="mailto:burov@fnal.gov">Alexey
                    Burov</a> </div>
                <div><b>Cc:</b> <a moz-do-not-send="true"
                    title="map-l@lists.bnl.gov"
                    href="mailto:map-l@lists.bnl.gov">map-l@lists.bnl.gov</a>
                </div>
                <div><b>Subject:</b> Re: [MAP] Liouville's theorem and
                  electromagnetic fields</div>
              </div>
            </div>
            <div> </div>
          </div>
          <div style="font-style: normal; display: inline; font-family:
            'Calibri'; color: rgb(0, 0, 0); font-size: small;
            font-weight: normal; text-decoration: none;">
            <div dir="ltr">
              <div style="font-family: 'Arial'; color: rgb(0, 0, 0);
                font-size: 10pt;">
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"><font face="Arial" size="2">Alexey,</font></div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"> </div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"><font face="Arial" size="2">I
                      understand your hope to “avoid long discussion”,
                      as the Lededev/Bogacz paper is more or less
                      incomprehensible to me.</font></div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"> </div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"><font face="Arial" size="2">It
                      is not clear why parameters epsilon1 and epsilon2
                      are called “emittances”, since they are not
                      invariants.</font></div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"> </div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"><font face="Arial" size="2">And,
                      I don’t know what indices 1 and 2 refer to.</font></div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"> </div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"><font face="Arial" size="2">Etc.</font></div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"> </div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"><font face="Arial" size="2">If
                      Valery or Alex care to enlighten me, that would be
                      most welcome.</font></div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"> </div>
                </div>
                <div>
                  <div style="font-style: normal; display: inline;
                    font-family: 'Calibri'; color: rgb(0, 0, 0);
                    font-size: small; font-weight: normal;
                    text-decoration: none;"><font face="Arial" size="2">--Kirk</font></div>
                </div>
                <div>
                  <div style="font: 10pt tahoma;">
                    <div style="background: none repeat scroll 0% 0%
                      rgb(245, 245, 245);">
                      <div style=""><b>From:</b> <a
                          moz-do-not-send="true" title="burov@fnal.gov"
                          href="mailto:burov@fnal.gov">Alexey Burov</a>
                      </div>
                      <div><b>Sent:</b> Thursday, March 10, 2011 6:02 PM</div>
                      <div><b>To:</b> <a moz-do-not-send="true"
                          title="kirkmcd@Princeton.EDU"
                          href="mailto:kirkmcd@Princeton.EDU">Kirk T
                          McDonald</a> </div>
                      <div><b>Cc:</b> <a moz-do-not-send="true"
                          title="map-l@lists.bnl.gov"
                          href="mailto:map-l@lists.bnl.gov">map-l@lists.bnl.gov</a>
                      </div>
                      <div><b>Subject:</b> Re: [MAP] Liouville's theorem
                        and electromagnetic fields</div>
                    </div>
                  </div>
                  <div> </div>
                </div>
                <div style="font-style: normal; display: inline;
                  font-family: 'Calibri'; color: rgb(0, 0, 0);
                  font-size: small; font-weight: normal;
                  text-decoration: none;">Kirk,<br>
                  <br>
                  they are not invariant. To avoid long discussion here,
                  please have a look at Lebedev-Bogacz paper:<br>
                  <a moz-do-not-send="true"
                    class="moz-txt-link-freetext"
href="http://iopscience.iop.org/1748-0221/5/10/P10010/pdf/1748-0221_5_10_P10010.pdf">http://iopscience.iop.org/1748-0221/5/10/P10010/pdf/1748-0221_5_10_P10010.pdf</a>,
                  <br>
                  the very end of it, pp. 21-23. You see that the 2
                  emittances of e-beam born at the magnetized cathode,
                  \epsilon_1 and \epsilon_2 may differ by orders of
                  magnitude. This is actual case for e-beam of our
                  e-cooler.   <br>
                  <br>
                  Alexey.<br>
                  <br>
                  On 3/10/2011 4:42 PM, Kirk T McDonald wrote:
                  <blockquote
                    cite="mid:608291C1C4744041A10D5279278A9353@mumu30"
                    type="cite">
                    <div dir="ltr">
                      <div style="font-family: 'Arial'; color: rgb(0, 0,
                        0); font-size: 10pt;">
                        <div>Alexey,</div>
                        <div> </div>
                        <div>For the subspace (q,p) we have</div>
                        <div> </div>
                        <div>dq’ dp’ = J dq dp</div>
                        <div> </div>
                        <div>J = | dq’/dq  dq’/dp |</div>
                        <div>      | dp’/dq  dp’/dp |</div>
                        <div> </div>
                        <div>Suppose p = m v + A   (in units where e/c =
                          1)</div>
                        <div>and we transform</div>
                        <div>q’ = q</div>
                        <div>p’ = mv = p – A(q)</div>
                        <div> </div>
                        <div>Then the Jacobian is</div>
                        <div>J = |       1     0 |</div>
                        <div>      | –dA/dq  1 | = 1</div>
                        <div> </div>
                        <div>It looks to me like the partial phase
                          volumes are also invariant under the
                          “transformation” of neglecting the vector
                          potential.</div>
                        <div> </div>
                        <div>--Kirk</div>
                        <div> </div>
                        <div style="font-style: normal; display: inline;
                          font-family: 'Calibri'; color: rgb(0, 0, 0);
                          font-size: small; font-weight: normal;
                          text-decoration: none;">
                          <div style="font: 10pt tahoma;">
                            <div> </div>
                            <div style="background: none repeat scroll
                              0% 0% rgb(245, 245, 245);">
                              <div><b>From:</b> <a
                                  title="burov@fnal.gov"
                                  href="mailto:burov@fnal.gov"
                                  moz-do-not-send="true">Alexey Burov</a>
                              </div>
                              <div><b>Sent:</b> Thursday, March 10, 2011
                                5:33 PM</div>
                              <div><b>To:</b> <a
                                  title="map-l@lists.bnl.gov"
                                  href="mailto:map-l@lists.bnl.gov"
                                  moz-do-not-send="true">map-l@lists.bnl.gov</a>
                              </div>
                              <div><b>Subject:</b> Re: [MAP] Liouville's
                                theorem and electromagnetic fields</div>
                            </div>
                          </div>
                          <div> </div>
                        </div>
                        <div style="font-style: normal; display: inline;
                          font-family: 'Calibri'; color: rgb(0, 0, 0);
                          font-size: small; font-weight: normal;
                          text-decoration: none;">One remark to Swann's
                          paper: <br>
                          His theorem relates to the total emittance,
                          not to the partial ones. Partial emittances
                          are sensitive to eA/c term. <br>
                          <br>
                          A possible way to get rid of eA/c inside
                          solenoidal structures is to make a fake
                          0-length edge of the solenoid at a place where
                          emittances are calculated; kicks from the edge
                          solenoidal fields have to be taken into
                          account, of course. <br>
                          <br>
                          Alexey. <br>
                          <br>
                          On 3/10/2011 4:09 PM, Kirk T McDonald wrote:
                          <blockquote
                            cite="mid:468B48A3C96B4BA3AA66387F9E650168@mumu30"
                            type="cite">
                            <div dir="ltr">
                              <div style="font-family: 'Arial'; color:
                                rgb(0, 0, 0); font-size: 10pt;">
                                <div>Folks,</div>
                                <div> </div>
                                <div>There is a technical question as to
                                  how we should be calculating emittance
                                  for beams in electromagnetic fields.</div>
                                <div> </div>
                                <div>The formal theory of Liouville’s
                                  theorem is clear that the invariant
                                  volume in phase space is to be
                                  calculated with the canonical momentum</div>
                                <div>gamma m v + e A / c</div>
                                <div>and not the mechanical momentum m
                                  v.</div>
                                <div> </div>
                                <div>This is awkward in two ways:</div>
                                <div>1.   We don’t always know the
                                  vector potential of our fields</div>
                                <div>2.   The vector potential is
                                  subject to gauge transformations, so
                                  canonical momentum is not gauge
                                  invariant.</div>
                                <div> </div>
                                <div>The second issue is disconcerting
                                  in that it suggests that phase-space
                                  volume, and emittance, are not
                                  actually invariant  -- with respect to
                                  gauge transformations.</div>
                                <div> </div>
                                <div>Hence, it is useful to note a very
                                  old paper,</div>
                                <div>W.F.G. Swann, Phys. Rev. 44, 233
                                  (1933)</div>
                                <div>which shows that the phase-space
                                  volume for a set of noninteracting
                                  particles is the same whether or not
                                  the term e A / c is included in the
                                  “momentum”.</div>
                                <div> </div>
                                <div>This result has the consequence
                                  that phase-space volume (and
                                  emittance) is actually gauge invariant
                                  – although the location of a volume
                                  element in space space is gauge
                                  dependent.</div>
                                <div> </div>
                                <div>---------------</div>
                                <div>This suggests that we could simply
                                  calculate emittances based only on the
                                  mechanical momentum, and avoid having
                                  to worry about the accuracy of our
                                  model for the vector potential.</div>
                                <div> </div>
                                <div>Of course, our calculations are
                                  actually of rms emittance, which is a
                                  better representation of the “ideal”
                                  emittance if the phase-space volume is
                                  more “spherical”, and not
                                  elongated/twisted.</div>
                                <div> </div>
                                <div>It could be that the shape of the
                                  phase-space volume is better for rms
                                  emittance calculation if the vector
                                  potential, in some favored gauge, is
                                  included in the calculation.....</div>
                                <div> </div>
                                <div>--Kirk</div>
                                <div> </div>
                                <div>PS  I have placed Swann’s paper as
                                  DocDB 560</div>
                                <div><a
                                    title="http://nfmcc-docdb.fnal.gov:8080/cgi-bin/DocumentDatabase"
href="http://nfmcc-docdb.fnal.gov:8080/cgi-bin/DocumentDatabase"
                                    moz-do-not-send="true">http://nfmcc-docdb.fnal.gov:8080/cgi-bin/DocumentDatabase</a></div>
                                <div>user = ionization pass =
                                  mucollider1</div>
                                <div> </div>
                                <div>See also the paper by Lemaitre that
                                  used Liouville’s theorem for cosmic
                                  rays in the Earth’s atmosphere (using
                                  mechanical momentum).   This may well
                                  be the earliest paper about particle
                                  beams and Liouville’s theorem.</div>
                                <div> </div>
                                <div>PPS  Scott Berg notes that when one
                                  evaluates emittance at a fixed plane
                                  in space, rather than at a fixed time,
                                  it is better to use the “longitudinal”
                                  coordinates (E,t) rather than (P_z,z).</div>
                                <div> </div>
                                <div>Is there any written reference that
                                  explains this “well known” fact?</div>
                                <div> </div>
                                <div>How is this prescription affected
                                  by electromagnetic fields?</div>
                                <div> </div>
                                <div>The vector potential of even a
                                  simple rf accelerating cavity has an
                                  A_z component (which is zero on axis,
                                  but nonzero off it).</div>
                                <div><a
                                    title="http://puhep1.princeton.edu/~mcdonald/examples/cylindrical.pdf"
href="http://puhep1.princeton.edu/%7Emcdonald/examples/cylindrical.pdf"
                                    moz-do-not-send="true">http://puhep1.princeton.edu/~mcdonald/examples/cylindrical.pdf</a></div>
                                <div>Note that the vector potential is
                                  nonzero outside the cavity, even
                                  though the E and B fields are zero
                                  there!</div>
                                <div> </div>
                                <div>Do we know how to include A_z in
                                  our longitudinal emittance
                                  calculations?</div>
                              </div>
                            </div>
                            <pre wrap=""><fieldset class="mimeAttachmentHeader"></fieldset>
_______________________________________________
MAP-l mailing list
<a class="moz-txt-link-abbreviated" href="mailto:MAP-l@lists.bnl.gov" moz-do-not-send="true">MAP-l@lists.bnl.gov</a>
<a class="moz-txt-link-freetext" href="https://lists.bnl.gov/mailman/listinfo/map-l" moz-do-not-send="true">https://lists.bnl.gov/mailman/listinfo/map-l</a>
</pre>
                          </blockquote>
                          <br>
                          <hr>
                          _______________________________________________<br>
                          MAP-l mailing list<br>
                          <a moz-do-not-send="true"
                            class="moz-txt-link-abbreviated"
                            href="mailto:MAP-l@lists.bnl.gov">MAP-l@lists.bnl.gov</a><br>
                          <a moz-do-not-send="true"
                            class="moz-txt-link-freetext"
                            href="https://lists.bnl.gov/mailman/listinfo/map-l">https://lists.bnl.gov/mailman/listinfo/map-l</a><br>
                        </div>
                      </div>
                    </div>
                  </blockquote>
                  <br>
                </div>
              </div>
            </div>
            <p>
            </p>
            <hr>
            _______________________________________________<br>
            MAP-l mailing list<br>
            <a class="moz-txt-link-abbreviated" href="mailto:MAP-l@lists.bnl.gov">MAP-l@lists.bnl.gov</a><br>
            <a class="moz-txt-link-freetext" href="https://lists.bnl.gov/mailman/listinfo/map-l">https://lists.bnl.gov/mailman/listinfo/map-l</a><br>
          </div>
        </div>
      </div>
    </blockquote>
    <br>
  </body>
</html>