

Neutrino Factories, Muon Colliders, and the International Muon Ionization Cooling Experiment (MICE)

Daniel M. Kaplan U.S. Spokesperson, MICE Collaboration

ILLINOIS INSTITUTE OF TECHNOLOGY

Transforming Lives. Inventing the Future. www.iit.edu

Physics Seminar Los Alamos National LLab Los Alamos, NM 22 May, 2002

Illinois Consortium for Accelerator Research

• 5-university consortium, founded 1999, led by IIT D. M. Kaplan (IIT), PI; T. I. Morrison (IIT), PD

Responds to looming crisis in sustaining progress of accelerator-based particle physics

- Includes >10 faculty, >30 researchers
- Main funding: 5-year State of Illinois grant at \$2.5M/year
- Main research activities: Linear Collider, MUCOOL (12 FTE)
- Close collaboration with Fermilab

Outline:

- 1. Motivation: Neutrino Factory and Muon Collider physics
- 2. Neutrino Factory Feasibility Studies
- 3. Need for muon cooling
- 4. Ionization cooling
- 5. Neutrino Factory cooling lattices and simulated performance (US, CERN)
- 6. Cooling experiment
- 7. Schedule
- 8. Costs
- 9. International collaboration
- 10. Summary

Motivation: Neutrino Factory Physics

2. Pattern of neutrino mixing very different from that of quarks:

Neutrino Factory Physics (cont'd)

3. Leading-order oscillation probabilities (natural hierarchy):

 $P(v_e \to v_{\mu}) = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.267 \delta m_{32}^2 L/E_{\nu})$

 $P(v_e \to v_{\tau}) = \cos^2\theta_{23} \sin^22\theta_{13} \sin^2(1.267 \delta m_{32}^2 L/E_{\nu})$

 $P(v_{\mu} \rightarrow v_{\tau}) = \cos^4\theta_{13} \sin^2 2\theta_{23} \sin^2(1.267 \delta m_{32}^2 L/E_v)$

where L = baseline (km) and E_v = energy (GeV)

\Rightarrow A high-energy ν_{ρ} beam offers unique possibilities!

 \rightarrow Gives best sensitivity to θ_{13} of any technique:

Neutrino Factory Physics (cont'd)

4. Comparing $v_e \rightarrow v_\mu$, $\overline{v}_e \rightarrow \overline{v}_\mu$ gives both sgn(Δm_{32}^2) and CP phase: $A_{CP} = \frac{P(\nu_e \rightarrow \nu_{\mu}) - P(\overline{\nu}_e \rightarrow \overline{\nu}_{\mu})}{P(\nu_e \rightarrow \nu_{\mu}) + P(\overline{\nu}_e \rightarrow \overline{\nu}_{\mu})} \approx \frac{4\sin 2\theta_{12} \cdot \sin \delta \cdot \sin(2\Delta m_{12}^2 L/4E)}{\sin \theta_{12}}$ Wrong-Sign Muon Measurements $L = 2800 \text{ km}, \sin^2 2\theta_{13} = 0.04$ 10²¹ E_{μ} = 20 GeV Solar LMA $\delta m^2 < 0$ 4 MW ($\sin^2 2\theta_{13} = 0.04$ $|\delta m^2_{32}| = 0.002 \text{ ev}^3$ $N(\overline{\nu_e} \rightarrow \overline{\nu_\mu}) / N(\nu_e \rightarrow \nu_\mu)$ ν₂ ν₋ Study 2 sec year **CP** Violation 1 0²⁰ 10 1 MW Se< V₃ Study 1 Ves VT Muons per 10⁷ 10¹⁸ 1.5 MW Matter effect Compromised by 10¹⁹ $\delta m^2 > 0$ Ve > V_µ Discovery & V_a 0.1 sign of δm^2 determination ν₂ γ₁ **CP** violation Stat. error for 0.01 $10^{20} decays$ 30 2000 4000 10 20 40 50 6000 8000 Muon Energy (GeV) Baseline (km)

• For LMA, 10^{20} decays with 50-kT detector will see δ down to $8^{\circ} \Rightarrow$ flux is crucual!

• Note: SNO now favors LMA at 99% CL (VAC and SMA ruled out @ $>3\sigma$)

Motivation: Muon Collider

- A pathway to *high-energy* lepton colliders
- unlike e^+e^- , \sqrt{s} not limited by radiative effects
- a muon collider can fit on existing laboratory sites even for $\sqrt{s} > 3$ TeV
- *s*-channel coupling of Higgs to lepton pairs $\propto m_{lepton}^2$

 E.g., μμ-collider resolution can separate near-degenerate scalar and pseudo-scalar Higgs states of minimal SUSY

"A Brief History of Muons"

- Muon storage rings are an old idea:
 - Charpak *et al.* (g 2) (1960), Tinlot & Green (1960), Melissinos (1960)
- Muon colliders suggested by Tikhonin (1968)
- But no concept for achieving high luminosity until ionization cooling
 - O'Neill (1956), Lichtenberg et al. (1956),

applied to muon cooling by Skrinsky & Parkhomchuk (1981) and Neuffer (1979, 1983)

- The realization (Neuffer and Palmer) that a high-luminosity muon collider might be feasible stimulated a series of workshops & formation (1995) of the Muon Collaboration
 - has since grown to 26 institutions and >100 physicists
- Snowmass Summer Study (1996)
 - study of feasibility of a 2+2 TeV Muon Collider [Fermilab-conf-96/092]
- Neutrino Factory suggested by Geer (1997) at the Workshop on Physics at the First Muon Collider and the Front End of the Muon Collider [AIP Conf. Proc. 435]; also CERN yellow report (1999) [CERN 99-02, ECFA 99-197]

See also "Status of Muon Collider Research and Future Plans" [PRSTAB **2**:081001 (1999)]; Neutrino Factory Feasibility Study I (2000) and II (2001) reports; "The Program in Muon and Neutrino Physics" [hep-ex/0108041]; http://www.fnal.gov/projects/muon_collider

<u>vFac Overview</u>

- Only way to produce intense beam of high-energy electron neutrinos: $\mu^- \rightarrow e^- v_\mu \bar{v}_e$
- 2 schemes with cooling:

- Both designs feature MW proton beams on high-power target, with pion collection & decay in focusing channel
- Decay muons undergo phase-space manipulations, cooling, acceleration, and storage in decay ring

<u>vFac Overview (cont'd)</u>

• 1 scheme without cooling (KEK):

- → 3 world regions cooperatively exploring complementary technical approaches, but all have similar goal:
 - $>10^{20}$ useful muon decays per year

- Based on large-acceptance FFAGs
- No phase rotation or cooling
- Exploring possibility of adding cooling
- R&D Issues: RF, injection/extraction, magnet design, dynamic aperture

"Proof of Principle" FFAG tested successfully at KEK in June

		U	<u>.S. v</u> I	Tac Fe	asibility	Studies				
Have establ	lished (with	detailed	d concep	ptual engine	ering)				
• that a Neu	trino Fa	ctory	is techn	ically fe	asible	Study	FS I	FS II		
• likely perf	ormance	e, cos	t, cost di	rivers, ne	eded R&D	Requestor	Fermilab	Brookhaven		
(nartial I	FS II autho	r list)	,	,		Duration	6 months	12 months		
Members of the Coll	aboration and N	Jon-Memb	or Par-	Pete	r Hwang [†] , Gregory Naumovich [†]	Finished	April, 2000	June, 2001		
ticipants of the Stud	v	on-menn.	ci i al-	Everson Elec	tric Company, Bethlehem, PA 180 David R. Winn	Target	С	Hg jet		
			Cha	Fairfield	University, Fairfield, CT 06430	Phase rotation	"distorting"	"nondistorting"		
Maury Goodman, Ahmed Hassar Lee	nein, James H. Norem, Cl C. Teng, Chun-xi Wang	aude B. Reed, D	ale Smith, One	David C. Carey, Sam Chil	dress, Weiren Chou, Fritz DeJongh, H. '	# Induction linacs	1	3		
Argonne Nation: Michael Anerella [†] , J. Scott	Argonne National Laboratory, Argonne, IL 60439 Michael Angella, L. Soutt Borg, Joseph M. Bronnani, Richard C. Fernow, Krishnaswamy Gounder, Cau				Janiel Elvira, David A. Finley, Stephen er, Carol Johnstone, Paul Lebrun, Valer	Cooling lattices (baseline)	FOFO	SFOFO		
Juan C. Gallardo, Ramesh Heiso C. Heauh [†] Miabaol A. Jaroo	Juan C. Gallardo, Ramesh Gupta, Michael Harrison [†] , Michael Hermrer [†] , Joseph D. Lykken, Freder				lerick E. Mills, Nikolai V. Mokhov, Alfr en Ng, Milorad Popovic, Zubao Qian, R	(alternate)	Single-Flip	Double-Flip		
Hsiao-C. Hseun ⁺ , Michael A. Iarocci ⁺ , Stephen A. Kann, Bruce ⁺ J. King, Harold G. Kirk, David Lissauer, Laurence S. Littenberg, Alfredo Luccio [†] , Hans Ludewig [†] , John S. Reid, Panagiotis Spentzouris, Ray Stefans				otis Spentzouris, Ray Stefanski, Sergei S trup, Andreas Van Ginnekon, Steve Vei	Storage-ring energy	50 GeV	20 GeV			
Indicative (not definitive!) FS II cost estimate					# RLAs	2	1			
System	S	um	Others ^a	Total	sity of Geneva, Switzerland	v_e / 10 ⁷ s / straight / MW	2×10^{19}	1.2×10^{20}		
h Dybach	(\$	(M)	(\$M)	(\$M)	G. Learned, Sandip Pakvasa Department of Division Honolulu	L Geron Constd C	I Hiazow Mary Anno Chin	ummae Llavid Hodin		
Proton Driv	er 1	167.6	16.8	184.4	E Study II d	 Study II design est. ~ 1/2 NLC cost R&D now focusing on the "cost drivers" Good prospect for substantial cost 				
Target Syste	ems	91.6	9.2	100.8						
Decay Chan	nel	4.6	0.5	5.1	R&D nov					
Induction Li	inacs 3	319.1	31.9	351.0	1Ve 10,					
Bunching		68.6	6.9	75.5	ato • Good p					
Cooling Cha	annel 3	317.0	31.7	348.7	reduction and/or performance increase					
Pre-accel. li	nac	188.9	18.9	207.8	rah via new ideas:					
RLA		355.5	35.5	391.0						
Storage Ring 107.4 10.7 118.1				colers cheaper acceleration						
Site Utilities	8	126.9	12.7	139.6		ers, encaper acco		L , C		
Totals	1,7	47.2	174.8	1,922.0	s Department, Van Allen Hall, I	owa City, IA	Robert Shrock	INI		

Kongli Geng', Hasan Padamsee, Valery Snemelin', Maury Tigner

FS II vFac Front End

Producing Pions

- BNL E910 pion production results
 - Pion yields peak at few hundred MeV/c
 - Data in fair agreement with predictions of MARS simulation

(yields may be slightly higher than predicted)

- At constant proton beam power, pion yields vary only slowly with proton energy
 - >> broad range of proton driver energies can be considered:

CERN 2.2 GeV FS II 24 GeV JHF 50 GeV

 More data to come from HARP @ CERN, FNAL E907

Target R&D for MW-Scale Proton Beams

- Carbon Target tested at AGS (24 GeV, 5E12 ppp, 100ns)
 Probably OK for 1 MW beam
- Target ideas for 4 MW: Water-cooled Ta spheres (P. Sievers), rotating band (B. King), front-runner is Hg jet
- CERN/Grenoble Hg-jet tests in 13 T solenoid
 - Field damps surface tension waves
- BNL E951: Hg jet in AGS beam
 - Jet (2.5 m/s) quickly re-establishes itself
 - Plan future test in 20T solenoid

FS II Proton Driver: AGS×7 (1-MW) Upgrade

- New SC linacs bypass booster synchrotron
- 6 bunches of 1.7×10^{13} each at 2.5 Hz rep. rate $\rightarrow 15$ Hz avg. rate, $2.5 \times 10^{14} p/s$
- 20 ms interbunch time allows Hg jet target to advance to undisturbed material between bunches
- Other 1-MW designs also workable (e.g., JHF, new Fermilab Booster, CERN SPL)

Pion Capture

US Design: target in 20-T capture solenoid, with field tapering to 1.25 T

CERN Design: magnetic horn (waist radius = 4 cm, peak current = 300 kA)

Radiation Levels/Survivability (N. Mokhov, FNAL)

• Remote-handling-area layout (Oak Ridge)

Component	1MW Life	4 MW life	
	years	years	
Inner Shielding (SS)	40	10	
Containment (SS)	500	125	
Hollow Conductor (SS)	200	50	
Superconducting Coil	100	25	

Nondistorting Phase Rotation

• Nondist. ϕR possible w/2 ind. linacs; 3 allow simpler, unipolar pulse design

• 2 "minicooling" absorbers lower *p* to 200 MeV/*c* for cooling and ε_t by $\approx 30\%$

Need for Muon Cooling

- Need ~ 0.1 μ/p -on-target \Rightarrow very intense muon beam from pion decay \Rightarrow must accept large (~10 π mm·rad r.m.s.) beam emittance
- No acceleration system yet demonstrated with such large acceptance
 ⇒ must cool the muon beam
- In current studies, cooling $\rightarrow \times \sim 10$ in accelerated muon flux
- Only one technique fast enough to cool muons before appreciable fraction decay:

\Rightarrow Ionization cooling

BUT:

- It has never been observed experimentally
- Studies show it is a delicate design and engineering problem

⇒Need Muon Ionization Cooling Experimental demonstration!

Ionization Cooling: Background

- RF cavities between absorbers replace ΔE
- Net effect: reduction in p_{\perp} w.r.t. p_{\parallel} , i.e., transverse cooling:

$$\frac{d\epsilon_N}{ds} = -\frac{1}{\beta^2} \langle \frac{dE_\mu}{ds} \rangle \frac{\epsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \text{ GeV})^2}{2\beta^3 E_\mu m_\mu X_0} \implies \text{want strong focusing, large } X_0,$$

Note: The physics is not in doubt

 \Rightarrow in principle, ionization cooling **has** to work!

... but in practice it is subtle and complicated so a test is important

Simplest Conceptual Scheme

• Long SC solenoids containing LH₂ absorbers & high-field RF cavities:

- But **∃** important subtlety:
 - Need to alternate direction of focusing field to avoid build-up of net angular momentum

Angular Momentum

- Consider particle entering long solenoid off-axis but || to axis
 - receives p_{\perp} kick \rightarrow helical motion within field
 - At end of solenoid, inverse p_{\perp} kick restores straight trajectory
- But if particle loses momentum within solenoid, helix radius decreases
 - \Rightarrow particle receives wrong p_{\perp} kick at exit, emerges with net angular momentum
 - \Rightarrow particle entering parallel to axis emerges at angle:

• Would disrupt beam if not handled correctly

Double-Flip Cooling Channel

(V. Balbekov & D. Elvira, FNAL)

Periodic Cooling Lattices

+

0

• Various lattice designs have been studied:

FOFO

Super-FOFO

0

(+ RFOFO, DFOFO, Single-Flip, Double-Flip)

Tapered-SFOFO Cooling Lattice:

(R. Palmer, BNL)

Tapered-SFOFO Cooling Performance

CERN Cooling Channel Design (A. Lombardi, CERN, Neutrino Factory Note NF-34)

- Uses lower-frequency RF (44 & 88 MHz)
- Coils "tucked into" cavities to reduce solenoid cost

High-power test planned for later this year

• Perfomance simulated using PATH – comparable to that of US design

Longitudinal Cooling

• Transverse ionization cooling self-limiting due to longitudinal-emittance growth

 \Rightarrow need longitudinal cooling for muon collider; could also help for vFac

• Possible in principle by ionization above ionization minimum, but inefficient due to small slope d(dE/dx)/dE and straggling

→ Emittance-*exchange* concept:

• Several promising designs under exploration

<u>Ring Coolers</u>

• Combine transverse cooling with emittance exchange:

- Injection & extraction appear soluble but require very fast kicker
- Could lead to vFac that is both cheaper and higher-performance

Cooling Experiment

The aims of the muon ionization cooling experiment are:

- to show that it is possible to design, engineer and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory;
- to place it in a muon beam and measure its performance in a variety of modes of operation and beam conditions.

As stated in the 2001 review of Muon Collaboration activities by the U.S. Muon Technical Advisory Committee (MUTAC):

⇒ The "cooling demonstration" is the key systems test for the Neutrino Factory.

• Much work over many years has established the components needed for muon cooling: SC solenoids, absorbers, RF cavities

It is time to start assembling a realistic cooling cell and carry out the test

Design Choices & Issues

Which design to test?

- All have common hardware elements: absorbers & cavities in strong solenoidal fields
- Choice constrained by availability of infrastructure (esp. low-frequency RF sources)

⇒ <u>Choose 201-MHz SFOFO cell as baseline:</u>

- \rightarrow smaller and less expensive installation
- RF power supply components available

(But illustrate dynamics today with both 88- and 201-MHz simulations)

- anticipate future upgrades as more resources available (e.g., adding more cooling cells) or to test new ideas (e.g., emittance exchange)

traditional beam-physics approach traditional HEP techniques • based on multiple beam-profile • measure trajectory of each muon (x,y,z,x',y',z',t)measurements **Our choice** • collect statistics • compute emittance using known transfer matrices • form "virtual bunch" off line and compute emittances detector resolution and knowledge of transfer matrices should be capable of 0.1% limits precision to 10% precision; "software collimation" cut outs e.g. decay

Multi-particle vs. single-particle emittance measurement:

Important further issues

• Detectors must operate in strong solenoidal fields & intense RF-cavity backgrounds & contribute negligible emittance degradation

 \Rightarrow e.g., scint. fibers, SiPix detectors, He TPC $\rightarrow \delta \varepsilon_{out} / \varepsilon_{in} \sim 10^{-3}$

• FNAL/MUCOOL tests of 805-MHz prototype cavity up to $E_{surf} \approx 53 \text{ MV/m}$ show high dark current (>100 mA inst.) and X-ray emission

 \Rightarrow LH₂ absorbers must shield detectors from cavities

R&D to reduce cavity discharge rate starting @ FNAL

- will explore surface treatments & coatings
- − closed-cell cavities under development have $\approx 1/2$ the surface field for same gradient (rate $\sim E^{10} \Rightarrow \sim 10^{-3}$ in dark current)
- µ-cooling channel puts hydrogen flasks with thin windows in close proximity to possible ignition sources!
 - ⇒ working out safe design and operating approaches is a crucial & challenging part of the FNAL/MUCOOL R&D effort

805-MHz cavity in SC solenoid in Lab G

Single-Particle Emittance Measurement (P. Janot, CERN)

• **Principle:** Measure each muon precisely before and after cooling cell Off-line, form "virtual bunch" and compute emittances in and out

Need to determine, for each muon, x,y,t, and x',y',t' $(=p_x/p_z, p_y/p_z, E/p_z)$ at entrance and exit of the cooling channel:

Track Reconstruction

Compute the transverse momentum
 from the circle radius:

 $p_T = 0.3 B R$ $p_x = p_T \sin \phi$ $p_y = -p_T \cos \phi$

- ➤ Compute the longitudinal momentum from the number of turns $p_Z = 0.3 \text{ B d / } \Delta \phi_{12}$ $= 0.3 \text{ B d / } \Delta \phi_{23}$ $= 0.3 \text{ B 2d / } \Delta \phi_{13}$ (provides constraints for alignment)
- Adjust d to make 1/3 of a turn between two plates (d = 40 cm for B = 5 T and p_z = 260 MeV/c) on average

> Determine E from (p² + m²)^{1/2}

Baseline 201-MHz Cooling Experiment (R. Palmer & R. Fernow, BNL)

Experiment Layout

Performance

Cooling Experiment – CERN design

(A. Blondel, K. Hanke, H. Haseroth, et al.)

CERN Simulation Results

- Experiment should verify in detail dynamics of cooling cell:
 - If input beam above equilibrium emittance, cools; if below, heats
 - Scan of input emittance reveals acceptance limits
 - Energy dependence of cooling performance

... for various cases:

- - -

- various absorbers full/empty
- various input energies
- various B-field configs
- various RF gradients & phases

Available Beams/Facilities

Comparison between beams

Single particle muon beams:

Beam	Momentum (MeV/c)	ΔP Δ(%)	Muon Intensity (during 1 s)	Area (m ²)	Exists
BNL D2	100 - 250	10	50,000 / 5 ms	5 x 3	Ves
CERN – TT1	200 - 450	?	720 / 0.1 ms	> 30 x 4	No
CERN – East Hall	200 - 450	?	1,000 / 0.5 ms	30 x 5	No
PSI – µE1	85 - 310	1 (?)	> 50,000 / 5 ms	30 x 5	Yes
RAL - ISIS	100 - 500	~ 2	20,000 / 5 ms	30 x 5	Yes
TRIUMF – M20	20 - 180	5	5,000 / 5 ms	12 x 4	Yes

14

- We have submitted LoIs to PSI & RAL – both labs interested
- Host lab should provide beamline & infrastructure
- Natural opportunity for important European contribution

PSI-µE1

Schedule Goals & Milestones:*

- Nov. '01: Letters of Intent to PSI, RAL
- Jan. '02: Presentation to PSI
- Mar. '02: Presentation to RAL \rightarrow invitation to present full proposal!
- 2002: Develop detailed technical proposal; fundraising
- 2002–4: Spectrometer construction
- 2004: Spectrometer shakedown in muon beam
- 2005–6: Assembly and shakedown of first cooling cell
- 2006–7: Assembly and shakedown of second cooling cell

* This is an aggressive schedule and requires new funding sources to be found

Preliminary Cost Estimate (M\$)

			1 cavity	1 cavity	2 cavities	2 cavities
			4 MW	8 MW	4 MW	8 MW
cooling DE (On crest)			11.5MV	16 MV	16 MV	23 MV
Approx. Δε/ε (%)			5%	7%	7%	10%
Cost estimate in US\$,	Fixed	Unit cost				
	cost					
COOLING CELLS						
RF Cavities						
4 cell cavity 200 MHz	* 0.3	0.5	0.5	0.5	1	1
RF Power						
CERN-refurbish		0.2	0.2	0.2	0.2	0.2
RAL-refurbish (?)		0.2	0	0.2		0.2
Magnets						
Focus pair	* 0.55	0.45	0.9	0.9	1.35	1.35
Coupling coil	*0.4	1	1	1	2	2
Liquid H2 absorbers						
	* 0.5	0.1	0.2	0.2	0.3	0.3
LH2 plant	2		2	2	2	2
Total for cooling cell US \$			4.8	5.0	6.85	7.05
SPECTROMETERS						
Solenoids	0.69	0.5	1.69	1.69	1.69	1.69
Detectors		2	2	2	2	2
Total spectrometers			3.69	3.69	3.69	3.69
Subtotal	2.60		Q /0	8 60	10.54	10.74
Infrastr extras(20%)	2.09		0.49	0.09	10.34	10.74
TOTAL	3.23		13.4	13.7	15.9	16 1
	1 1					

cost-effective use of existing RF power sources

* development costs borne by MUCOOL

Organization of International Collaboration

• Starting at NuFact'01, we have formed the Muon Cooling Demonstration Experiment Steering Committee (MCDESC):

Alain Blondel (Chair and European Spokesperson), U. Geneva Rob Edgecock, Rutherford Steve Geer, Fermilab Helmut Haseroth, CERN Daniel M. Kaplan (US Spokesperson), IIT Yoshitaka Kuno, Osaka U. Michael S. Zisman, LBNL

• We have designated the Technical Team Leaders:

Particle detectors: A. Bross, V. Palladino
RF radiation (dark current and X-Ray) issues: E. McKigney, J. Norem
Magnet systems: H. Haseroth (provisional), M. Green
RF cavities and power supplies: R. Garoby, R. Rimmer
Hydrogen absorbers: M. A. Cummings, S. Ishimoto
Concept development and simulations: A. Lombardi, P. Spentzouris
Beamlines: R. Edgecock, C. Petitjean

• We have held several video meetings, several workshops (CERN, Chicago, London, CERN), and a workshop is upcoming at Rutherford Lab July 8–10

(see http://muonstoragerings.cern.ch/October01WS/oct01ws.html, http://www.capp.iit.edu/~capp/workshops/mumice02/mumice02.html, and http://hepunx.rl.ac.uk/neutrino-factory/muons/mice-meeting.html)

Participating Institutes:

Louvain La Neuve **NESTOR** Institute Hellenic Open University **INFN LNF Frascati INFN** Milano **INFN** Napoli **INFN Roma II INFN** Trieste Osaka University **Paul Scherrer Institute** University of Zurich Rutherford Appleton Laboratory **Brookhaven National Laboratory** Fairfield University Illinois Institute of Technology Michigan State University Princeton University University of California, Riverside University of Chicago University of Iowa

CERN University of Athens **INFN Bari INFN** Legnaro **INFN** Padova **INFN Roma I INFN Roma III KEK ETH Zurich** University of Geneva Imperial College London Argonne National Laboratory Columbia University Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Northern Illinois University University of California Los Angeles Indiana University University of Illinois at Urbana-Champaign University of Mississippi

Summary

- Muon storage rings could be a uniquely powerful option for large future facilities
- A Neutrino Factory is the best way to study neutrino mixing
- Technical feasibility has been demonstrated "on paper"
- Prerequisite to Neutrino Factory approval: experimental demonstration of muon ionization cooling
- Scope of the Muon International Cooling Experiment defined; well on the way to specifying the details
- International collaboration formed and leadership structure in place
- Scope and time scale comparable to mid-sized HEP experiment
- Need to line up necessary resources (people, equipment, funding)
- Good opportunity for new collaborators want to join?