

Neutrino Factory and Muon Collider R&D: Status and Plans

Michael S. Zisman CENTER FOR BEAM PHYSICS

Project Manager, Neutrino Factory and Muon Collider Collaboration

BNL Seminar January 17, 2007

- Organization
- History
- International perspective
- U.S. R&D partners
- Physics context
- Facility description
- Ionization cooling
- R&D overview
- R&D accomplishments (Simulations, Targetry, RF cavity, Absorber, SCRF)
- MICE
- Future plans
- Summary

<u>Organization</u>

- U.S. Neutrino Factory and Muon Collider Collaboration broadly based
 - more than 100 scientists and engineers from about 30 institutions
- NFMCC is a mix of accelerator and particle physicists
 - from both National Labs and Universities
- We also greatly benefit from collaborators in Europe and Asia
- Main funding support from DOE, including valuable SBIR grants
 - some U.S. support has come from NSF
- Program oversight by Muon Collaboration Oversight Group (MCOG)
 - Laboratory directorate level (BNL, Fermilab, LBNL)
- MCOG appoints technical review committee (MUTAC)
 - chaired by Bob Kephart

- NFMCC began as informal group of ${\approx}100$ people investigating feasibility of building a high-energy Muon Collider
 - see "Muon Collider Feasibility Study Report" Snowmass 1996 (BNL-52503, FNAL-Conf-96/092, LBNL-38946; 480 pages)
- Oversight/review structure initiated by DOE and Lab Directors when organization formalized
- First MUTAC review recommended that NFMCC focus on <u>one</u> facility and conduct end-to-end technical study
 - choice was Neutrino Factory (viewed as technically simpler)
- In 1999–2000, Fermilab director sponsored Feasibility Study I (~\$1M engineering effort)
 - concluded that Neutrino Factory is feasible but expensive (~\$2B)
- In 2000–2001, BNL director + NFMCC sponsored Feasibility Study II
 - intensity improvement (5x Study I), but still expensive

- International Neutrino Factory community has held annual "NuFact" workshops since 1999
 - provides opportunity for physics, detector, and accelerator groups to plan and coordinate R&D efforts at "grass roots" level
 - venue rotates among geographical regions (Europe, Japan, U.S.)

Conference Venue
Lyon, France
Monterey, CA
Tsukuba, Japan
London, England
New York, NY
Osaka, Japan
Frascati, Italy
Irvine, CA
Okayama, Japan

- Activities in Europe
 - European Neutrino Factory Feasibility Study completed in 2002
 - ECFA report encouraged R&D effort; EMCOG set up (Spring 2002)
 - Beams for European Neutrino Experiments launched in 2004 (Chair: Vittorio Palladino)
 - International Scoping Study (ISS) of Future Neutrino Factory and Superbeam Facility launched at NuFact05
 - hosted by RAL; sponsored by BENE, NFMCC, NuFact-J, UKNF
 - first phase completed at NuFact06
 - International Design Study (IDS) being launched as ISS follow-on
 - organizational meeting at CERN in February 2007

International Perspective

- Activities in Japan (KEK, Kyoto, Osaka)
 - Japanese Neutrino Factory Feasibility Study completed in 2001
 - contributing to NFMCC effort (absorbers and FFAG studies)
 - also to ISS
- Two "global" experiments launched (MICE, MERIT)
 - China (ICST, Harbin) has recently joined MICE collaboration
- Another experiment in which we hope to be involved is EMMA
 - recently funded in the UK to build electron model of non-scaling FFAG

- Collaborating with Muons, Inc. and FNAL MCTF on Muon Collider R&D
 - MCTF goals (subject to funding constraints) include
 - FY07
 - design 1.5 TeV low-emittance Muon Collider
 - prepare plan for MTA high-power proton beam
 - prepare development plan for 50-T HTS solenoid
 - begin design of 50-T'solenoid
 - FY08
 - test high-pressure RF cavity with proton beam
 - develop and install muon beam line, including target
 - test 5-T HTS insert in 15-T solenoid
 - design and prototype helical cooling channel elements
 - FY09
 - commission muon beam line
 - begin fabrication of helical cooling channel magnets
 - complete engineering design for 50-T HTS solenoid
 - FY10
 - complete helical cooling channel magnets and begin MANX
 - complete prototype 50-T HTS solenoid
 - prepare report on helical cooling channel

- NFMCC focus on Neutrino Factory and Muon Collider driven by physics
 - for Neutrino Factory
 - exciting evidence for neutrino oscillations, with parameters within reach of future accelerator experiments
 - beam properties

$$\mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \Rightarrow 50\% \nu_{e} + 50\% \overline{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} \overline{V}_{e} V_{\mu} \Longrightarrow 50\% \overline{V}_{e} + 50\% V_{\mu}$$

- decay kinematics well known (minimal hadronic uncertainties in spectrum, flux, and comparison of μ^+ and μ^- results)
- $v_e \rightarrow v_\mu$ oscillations give easily detectable "wrong-sign" muons
- for Muon Collider
 - no bremsstrahlung or beamstrahlung; fits on existing site
 - 10x higher energy reach than similar energy proton collider

Neutrino Factory comprises these sections (NFMCC doing R&D on most)

• Not an easy project, but no fundamental problems found

Muon Collider comprises these sections (similar to Neutrino Factory)

- Much of Muon Collider R&D is common with Neutrino Factory R&D
 - carried out by Muons, Inc., NFMCC, and newly formed MCTF at FNAL

- Challenges of a muon-based facility (Neutrino Factory or Collider)
 - muons have short lifetime (2.2 μ s at rest)
 - puts premium on rapid beam manipulations
 - high-gradient NCRF (in magnetic field) for cooling
 - presently untested ionization cooling technique
 - fast acceleration system
 - muons are created as tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - \circ low production rate \Rightarrow
 - target that can handle multi-MW beam
 - \circ large muon beam transverse phase space and energy spread \Rightarrow
 - ionization cooling
 - high-acceptance acceleration system and decay ring
- Cooling requirements for Muon Collider much more stringent than for Neutrino Factory

- The need to cool the muons quickly dictates the approach to be used
 - muon lifetime in rest frame is 2.2 μs
 - "standard" stochastic cooling approach is much too slow
 - use novel technique of ionization cooling (tailor-made for muons)
- Analogous to familiar SR damping process in electron storage rings
 - energy loss (SR or dE/dx) reduces p_x , p_y , p_z
 - energy gain (RF cavities) restores only p_z
 - repeating this reduces $p_{x,y}/p_z$ and thus transverse emittance

- There is also a heating term
 - with SR it is quantum excitation
 - with ionization cooling it is multiple scattering
- Balance between heating and cooling gives equilibrium emittance

$$\frac{d\varepsilon_N}{ds} = -\frac{1}{\beta^2} \left| \frac{dE_\mu}{ds} \right| \frac{\varepsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \,\text{GeV})^2}{2\beta^3 E_\mu m_\mu X_0}$$

cooling

heating

$$\varepsilon_{x,N,equil.} = \frac{\beta_{\perp} (0.014 \,\text{GeV})^2}{2\beta m_{\mu} X_0 \left| \frac{dE_{\mu}}{ds} \right|}$$

— prefer low β_{\perp} (\Rightarrow strong focusing), large X₀ and *dE/ds* (\Rightarrow H₂ is best)

• Merit factors for candidate ionization cooling absorbers (scaled as equilibrium emittance)

Material	$(dE/ds)_{min.}$ (MeV a^{-1} cm ²)	X_0 (a cm ⁻²)	Relative merit
Gaseous H ₂	4.103	61.28	1.03
Liquid H_2	<mark>4.034</mark>	<mark>61.28</mark>	1
He	1.937	94.32	0.55
LiH	1.94	86.9	0.47
Li	1.639	82.76	0.30
CH₄	2.417	46.22	0.20
Be	1.594	65.19	0.18

- requirements for Al windows and extended absorber with H_2 and He degrade these merit factors by roughly 30%
 - \circ H₂ is best, even with windows included

- Typical momentum chosen for transverse cooling is $p \approx 200$ MeV/c
 - this is optimal in terms of muon production from thick target

- Running below min. ionization energy increases longitudinal emittance
 - lower E particles have higher dE/dx than do higher E particles
- Running above min. ionization point disadvantageous for several reasons
 - more demanding RF and magnet requirements; more *E* straggling

- To carry out 6D cooling, add emittance exchange to the mix
 - create increased energy loss for high energy muons compared with low-energy muons
 - put wedge-shaped absorber in a dispersive region
 - use additional path length in continuous absorber for high energy muons

- Dispersion can be created with a cooling ring or so-called "Guggenheim" arrangement of a single-pass channel
 - Guggenheim structure avoids difficult injection and extraction issues and permits modification of channel parameters as cooling proceeds
 - at the expense of more hardware

- Gas filled helical channel can also be used as a compact 6D cooling channel
 - superposition of helical dipole and solenoidal fields gives increased path length for higher momentum particles

 still need RF cavities, either internal to magnetic channel or in separate interleaved sections

- NFMCC R&D program has the following components:
 - simulation and theory effort in support of Neutrino Factory and Muon Collider design (incl. MCTF, FFAG/EMMA)
 - development of high-power target technology (Targetry)
 - hardware development of cooling channel components (MUCOOL)
- NFMCC also participates in three international endeavors:
 - MICE (ionization cooling demonstration)
 - MERIT (high-power Hg-jet target)
 - ISS \rightarrow IDS (simulation studies of Neutrino Factory design)
- Hardware development continues as major focus of NFMCC activity
- Simulation effort aimed at reducing Neutrino Factory cost ("Study IIa") gave good results in APS neutrino study
 - increased performance, lower cost

- Simulations
 - a main focus recently was participation in APS Multi-Divisional Neutrino Study (http://www.aps.org/policy/reports/multidivisional/neutrino/index.cfm)
 - detailed report written by "Neutrino Factory and Beta Beams Experiments and Development Working Group"
 - http://www.aps.org/policy/reports/multidivisional/neutrino/upload/ Neutrino_Factory_and_Beta_Beam_Experiments_and_Development_ Working_Group.pdf
 - considerable progress made in simplifying front-end systems while maintaining performance
 - have now completed one year ISS to follow up on the improvements
 - making progress on studies of 6D cooling (emittance exchange) motivated by collider design
 - several cooling ring designs look workable
 - innovative helical "linear" channel also being investigated (with MCTF and Muons, Inc.)

- Substantial cost savings predicted from reoptimization of Study II design
 - at the same throughput for one sign of muon as Study II
 - both signs now available, so facility performance effectively doubled

System	Cost reduction (Study IIa vs. II)
Target and Capture	0.99
Bunching and Phase Rotation	0.38
Cooling	0.60
Acceleration	0.77
Aggregate	0.65

- main savings accrued from
 - developing RF bunching and phase rotation scheme
 - developing large acceptance FFAG scheme for final acceleration stages
 - simplifying cooling channel (takes advantage of larger downstream acceptance)

- Use RF to bunch, then to phase rotate
 - performance acceptable and less expensive than induction linacs
 - uses "standard" cooling channel components
 - \bullet keeps both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$
 - RF frequencies vary along the beam channel

- Use simplified cooling channel
 - shorter, fewer magnets and cavities, simpler absorbers (replace LH_2 with LiH)

Study II channel

Study IIa channel

— simpler channel performs acceptably for both μ^{\star} and μ^{-} (with larger downstream acceptance)

Design and Simulations

- Developed non-scaling FFAG scheme for cost-effective large acceptance acceleration
 - below 12.6 GeV, linac + cascaded "dog-bone" RLA scheme is more cost effective
 - at higher energies, use non-scaling FFAG rings
 - electron model of FFAG (EMMA) recently funded in UK

Design and Simulations

- Summary of main findings from ISS (report in preparation)
 - preferred proton driver energy is 10 \pm 5 GeV
 - Hg-jet target gives optimal muon production for protons in preferred energy range
 - Study IIa front end design is preferred, using simultaneous operation with both muon signs
 - non-scaling FFAG beam dynamics limits performance, so preferred approach will use only one, or at most two, such systems
 - both racetrack and triangular rings possible (two rings needed in either case)
 - triangle more efficient if two suitable sites are operating simultaneously
 - racetrack better for a single detector site, and has no directional constraints

- Preferred energy (simulations by H. Kirk)
 - also need short bunches, 1-3 ns is preferred range

Design and Simulations

- $\boldsymbol{\cdot}$ Target comparisons done for Hg and C
 - conclude that Hg is best

BERKELEY LAB

•	Results from H. Kirk	
Compare Meson production for Hg at 24 GeV and 10 GeV	$\frac{N^{+}_{10GeV}}{N^{+}_{24GeV}} = 1.07$	$\frac{N^{-}_{10GeV}}{N^{-}_{24GeV}} = 1.10$
Compare Meson production for C at 24 GeV and 5 GeV	$\frac{N^+{}_{5GeV}}{N^+{}_{24GeV}} = 1.90$	$\frac{N^{-}_{5GeV}}{N^{-}_{24GeV}} = 1.77$
Compare Meson production for Hg at 10 GeV and C at 5 GeV	$\frac{N^+_{Hg-10GeV}}{N^+_{C-5GeV}} = 1.18$	$\frac{N^{-}_{Hg-10GeV}}{N^{-}_{C-5GeV}} = 1.22$

- Target concept based on free Hg jet in 20-T solenoidal field
 - jet velocity of 20 m/s establishes "new" target each beam pulse

- Targetry effort focused mainly on validating efficacy of Hg-jet target
 - E951 experiment at BNL looked at both stationary and moving Hg

• Without magnetic field, Hg jet looks workable

• With magnetic field, surface instabilities are stabilized

- To do beam test of Hg jet with magnetic field, MERIT proposal submitted to CERN April, 2004 (approved April 2005)
 - located in TT2A tunnel to ISR, in nTOF beam line
 - first beam from CERN PS ~July, 2007

- Fabrication of 15 T magnet completed
 - operates at 80 K (cryogenic but not superconducting)
 - repetition rate ~ 0.001 Hz (20 minute cycle)
 - Hg jet system capable of 20 m/s completed at ORNL
 - 15-T solenoid in test location at MIT

Hg jet system at ORNL

- Cooling component tests (rf cavities and absorbers) carried out in newly constructed area at Fermilab
 - MUCOOL Test Area (MTA, funded by NFMCC)
 - located at end of 400 MeV linac; will initially be used for beam tests ("blast" tests)
 - MCTF exploring plans to add muon beam line for 6D cooling

- Motivation for RF test program: observed degradation in cavity performance when strong magnetic field is applied
 - open-cell cavity did not exhibit such a limit, so problem does not seem fundamental

5-T solenoid + 805-MHz cavity

Cavity R&D (MUCOOL)

- Materials tests will use 805-MHz pillbox cavity with replaceable windows or "buttons"
 - cavity fits in bore of MTA solenoid
 - generate field enhancement at buttons to test performance of materials and/or coatings

"Button" for materials tests

- Tested pressurized version of button cavity (Muons, Inc.)
- use high pressure H_2 gas to limit breakdown

ACCELERATOR AND FUSION RESEARCH DIVISION

- Initial tests of 201 MHz cavity have commenced
- LBNL, Jlab, and U-Miss collaborated on cavity fabrication

• reached 16 MV/m easily (without magnetic field)

42-cm curved Be window

- 201-MHz cavity can be tested in close proximity to 5-T solenoid to provide some magnetic field
 - more realistic field configuration requires large diameter coupling coil (awaiting sufficient funding to acquire this)
 - discussions with Harbin ICST group took place in December

- Absorbers for cooling channel tests
 - design based on LH_2 system with internal convection cooling
 - requires large diameter (300 mm), very thin (but strong!) Al windows
 - plus a second set of safety windows to form vacuum barrier
 - design tightly integrated with focusing coil package

- $\boldsymbol{\cdot}$ Initial absorber LH_2 filling tests carried out at MTA last summer
 - convection-cooled absorber prototype fabricated at KEK
 - plan to also test IIT/Fermilab forced-flow absorber design here

Prototype LH_2 absorber

Test cryostat at MTA

- Developing strong, thin windows (IIT, NIU, Oxford, U-Miss.) is a primary focus of absorber work
 - destruction tested windows at NIU (with satisfactory results)
 - $\circ~$ 340 μm windows break at 120 psi (8 atm)
 - new window shape is stronger and can be even thinner

 use photogrammetry to characterize window behavior and verify FEA calculations (LH₂ safety requirement)

- Stronger, thinner "inflected" windows built (at U.-Miss.) and tested successfully at Fermilab
 - 125 μm window is 3x stronger than original design
 - burst at 140 psi

- Initial test of 201–MHz scrf cavity at Cornell gave 11 MV/m
 - Q slope unacceptably large
- Work on 201 MHz scrf for acceleration system has shifted gears (but funding uncertain)
 - now trying to understand ${\boldsymbol{Q}}$ slope in terms of impurities and Nb coating properties

- Building 500 MHz cavity to study Nb sputtering techniques
 - can study phenomena more cost-effectively with smaller cavity

- Motivation for MICE
- muon-based Neutrino Factory is most effective tool to probe neutrino sector and hopefully observe CP violation in lepton sector
 - results will test theories of neutrino masses and oscillation parameters, of importance for particle physics and cosmology
- a high-performance Neutrino Factory ($\approx 4 \times 10^{20} v_e$ aimed at far detector per 10^7 s year) depends on ionization cooling
 - straightforward physics, but not experimentally demonstrated
- facility will be expensive (O(€1B)), so prudence dictates a demonstration of the key principle
- Cooling demonstration aims:
 - to design, engineer, and build a section of cooling channel capable of giving the desired performance for a Neutrino Factory
 - to place this apparatus in a muon beam and measure its performance in a variety of modes of operation and beam conditions

- Another aim
 - show that design tools (simulation codes) agree with experiment
 - gives confidence that we can optimize design of an actual facility
 - we test section of "a" cooling channel, not "the" cooling channel
 - simulations are the means to connect the two
- Both simulations and apparatus tested must be as realistic as possible
 - incorporate full engineering details of all components into simulation

- Layout of MICE components
 - one lattice cell of cooling channel components (based on U.S. Study-II configuration) is indicated
 - note that cooling channel is simply a linac with absorber material added

 An alternative magnetic configuration with no field flip will also be tested

• MICE cooling channel will be built up in stages to ensure complete understanding and control of systematic errors

- MICE status
 - proposal submitted in January, 2003
 - international review held February, 2003 (recommended approval)
 - scientific approval from RAL in October, 2003
 - absorber system concept passed preliminary safety review by international review panel in December, 2003
 - estimated hardware cost is £11M (total cost £25M)
 - most of this is now in hand
- In U.S., MUTAC + MCOG have strongly recommended MICE
 - experiment considered "crucially important demonstration"
- \cdot U.S. funding obtained from both DOE and NSF
 - partial funding obtained; remainder from NFMCC annual budget
 - Phase I hardware fabrication well under way

Collaborating institutions

Europe

Bari Brunel CERN Edinburgh Genève Genova Glasgow Impérial College Legnaro Liverpool LNF Frascati Louvain la Neuve Milano Napoli NIKHEF Novosibirsk Oxford Padova PSI RAL. Roma III Sheffield Trieste

Asia KEK

Osaka ICST-Harbin

U.S.

ANL BNL Chicago-Enrico Fermi Institute FNAL Illinois Institute of Technology TJNAF LBNL Mississippi Northern Illinois UCLA UC-Riverside

- Targetry
 - complete MERIT experiment and publish results
- Cooling/MICE
 - complete testing of 805 MHz and 201 MHz high-gradient cavities
 - complete MICE experiment and publish results
- Acceleration
 - study Q disease and develop mitigation techniques
 - participate in EMMA test program
- Simulations
 - continue developing cost-optimized front-end for Neutrino Factory
 - participate in International Design Study (follow-on to ISS)
 - continue collider studies with aim of completing feasibility study
 - collaborate on MCTF test program

- International community has made excellent progress in identifying and studying the R&D topics relevant to design of muon-based NF and collider
 - both driven by strong science case
- Close collaboration among groups in Asia, Europe and the U.S. serves to minimize duplication of effort and maximize R&D effectiveness
 - examples: MICE, MERIT, ISS, NuFact workshops
- Muon Collider R&D effort reinvigorated by creation of MCTF at Fermilab
 - developing plans for 6D cooling experiment (MANX)
- NFMCC R&D program fosters close collaboration between accelerator and particle physicists, including training of students and post-docs
- We welcome additional collaborators to this challenging endeavor

"I guess there'll <u>always</u> be a gap between science and technology."

We must continue to build and test hardware!