
Neutrino-Induced Radiation Hazard

Muon Decay

$$\mu^- ==> \nu_\mu + \overline{\nu}_e + e^ \mu^+ ==> \overline{\nu}_\mu + \nu_e + e^+$$
Typical opening angle:
 $\theta_\nu \approx \frac{1}{\gamma_\mu}$
For 2 TeV muons
 $\theta_\mu \approx 50 \, \mu rad$

ν INTERACTIONS (DIS)

TeV-scale NEUTRINOS interact primarily through Deep Inelastic Scattering (DIS) on nucleons (N)

$$u_{e} + N \longrightarrow$$
 $\stackrel{\mu}{e} + Hadrons (75\%)$
 $\nu + Hadrons (25\%)$

Producing the particles:

 $Hadron meters \approx 40\% \\ showers of E_T$

Electromag. meters $\approx 20\%$ showers of E_T

 $Muons \qquad km \qquad pprox 20\% \ of E_T$

 $Neutrino pprox 20\% \ of E_T$

Question: isn't the neutrino cross-section very small?

$$\sigma_{\nu N}^{total} \approx$$
 $7 \times 10^{-36} \, cm^2 \times E_{\nu} [TeV]$

The off-site dose limit is:

 $10 \, mrem/year =$ $600 \, TeV/kg/year \, (for$ min.ion.radiation) $\approx Energy \, of \, 10^3 \nu's$

The small cross-section is compensated by:

$$6 \times 01^{26}$$
 N/kg 2×10^{21} ν /year