

High-power Targetry for Future Accelerators September 8-12, 2003 BNL

Freely Dropping Mercury Curtains

P. SIEVERS CERN

FREE FLOWING CURTAIN TARGET

Front view

Top view

INNER CONDUCTOR OF HORN

FEED-NOZZLE

START OF

HORN

Burst Frequency: 50 Hz

Target: 1cm x 1cm

L = 40cm

Free Jet		Pulsed Curtain	Continuous Curtain Tip explodes Curtain explo		
Volume Flow (cm ³ /s)	2000.	2000.	2000.	5000.	
Velocity at nozzle (m/s)	>20.	1.25	0.5	1.25	
Pressure (kPa)	2700	10.5 Pulsed Pressure. Mech. or el. magn. valve	1.7	10.5	

Conclusion

- Yield somewhat reduced by nozzle and curtain?
- Very conservative pressures and velocities
- For lower burst frequencies even better
- How much of curtain explodes?
- Pulsed curtain
- Valve at 50 Hz

Pulsed pressure

Mechanical valve (rotating shutter)

El. magn. valve:

High-power Targetry for Future Accelerators September 8-12, 2003 BNL

Stationary High-power Target for a Neutrino Factory

P. SIEVERS CERN

Proton Energy: 2.2 Gev

Burst Duration : $3.3 \mu s$

Burst Frequency: 50 Hz

Beam Power: 4 MW

STATUS OF STATIONARY GRANULAR TARGET AND PERSPECTIVES PETER SIEVERS - CERN

- ♦ Tantalum (or WC, Pt) Spheres : Ø = 2 mm, ρ = 0.6 x 16.8 ≈ 10 g / cm³
- ◆ Small static thermal stress: Each sphere heated uniformly.
- ♦ Small thermal shock waves: Resonance period of a sphere is (0.26 μs) small relative to the heating time (3.3 μs).
- ◆ Large Surface / Volume: F/V~5000 cm²/250 cm³. Heat removed where deposited.
- ♦ Heat Transfer Coefficients: 20 kW / m² K for water, 10 kW / m² K for He-gas, within reach.
- ◆ Time constant of temperature decrease between pulses (20 ms):~ 40...80 ms
- ◆ Set-up to measure heat evacuation from Granular "Wire Bunch" Target was under Construction, stopped due to lack of funding!
- ◆ Fatigue of Spheres:
 130 Mio. thermal cycles / month.
- ◆ Integration of Target into Horn.
- ◆ Radiation damage of spheres, container and windows: n x10 dpa's per n weeks.
 (see also SNS-Target)
- Moving Window.
- ◆ Lifetime of Target > Horn to be expected?

GRANULAR TARGET COOLED BY LIQUID OR GAS

P. SIEVERS, CERN 20/11/2000

He-Gas COOLED GRANULAR TARGET 4 MW-BEAM

He-Gas COOLED GRANULAR Single (50Hz) and Quadruple (12.5Hz) TARGET 4 MW-BEAM

COOLED GRANULAR TARGET 4 MW-BEAM

COOLED GRANULAR TARGET 4 MW-BEAM

Table 1: Minimum and maximum temperature inside spheres and He-gas during the 50 Hz pulsed beam. The time average temperatures refer to a 4 MW continuous beam.

	$T_{S,}$ min.	$T_{S,}$ Max.	T _S , average	T _{He,} min.	T _{He} Max.	T _{He} average
Single target, $_{\dot{m}\mathrm{He}} = 0.36\mathrm{kg/s}$	631	731	680	505	585	544
Single target, $\dot{m}_{He} = 0.72 \text{ kg/s}$	387	487	435	240	302	270
Quadruple target, $\dot{m}_{He} = 0.36 \text{ kg/s}$	125	225	170	100	180	136

GRANULAR TARGET WITH He-GAS COOLING AND WITH WINDOWS OF EXTENDED LIFETIME

High-power Targetry for Future Accelerators, BNL, USA, Sept. 8-12, 2003 Stationay High-power Target for a Neutrino Factory, P. Sievers

P. 9/11

TEST SET-UP TO MEASURE HEAT TRANSFER COEFFICIENT

Test Circuit for High Power Heat Removal From Granular "Wire Bunch" Target

