

Positron Production for Linear Colliders

- Linear Colliders
- Conventional Positron Production
- Undulator Based Positron Production

Linear Colliders

- Linear colliders are high energy electron-positron colliders
 - Synchrotron radiation limits the c.m.s. energies that can be achieved in a circular machines
 - Use two separate linacs to accelerate electron and positrons to very high energies and then collide the beams
- Multi-billion dollar devices
- The nominal beam energies are 250 GeV on 250 GeV
- Plans exist to run linear colliders from the Z mass and up to 1 TeV c.m.s. or even higher
- Different projects, very large international collaborations
 - NLC, effort led by SLAC (base of experience with the SLC)
 - GLC, formerly the JLC, effort led by KEK, Japan
 - TESLA, effort led by DESY
- Different technologies
 - X-band warm linacs
 - L-band super-conducting linacs
- Machines complementary to the high energy hadron colliders
- Potential to discover the Higgs, SUSY ...

NLC/GLC Parameters & Layout

High Energy ID Darameters						
підпі	High Energy IP Parameters					
	Stage 1			ge 2		
CMS Energy (GeV)	50	0	10	00		
Site	US	Japan	US	Japan		
Luminosity (10 ³³)	20	25	30	25		
Repetition Rate (Hz)	120	150	120	100		
Bunch Charge (10 ¹⁰)	0.7	5	0.	75		
Bunches/RF Pulse	19	2	19	92		
Bunch Separation (ns)	1.	4	1	.4		
Loaded Gradient (MV/m)	50)	5	50		
Injected $\gamma \epsilon_{\rm X}$ / $\gamma \epsilon_{\rm y}$ (10 ⁻⁸)	300	300 / 2)/2		
γε _x at IP (10 ⁻⁸ m-rad)	360		36	360		
γε _y at IP (10 ⁻⁸ m-rad)	4		4			
β_x / β_y at IP (mm)	8/0	.11	13 / 0.11			
σ_x / σ_y at IP (nm)	243 /	3.0	219 / 2.1			
θ_x / θ_y at IP (nm)	32 / 28		17	/ 20		
σ_z at IP (um)	11	0	110			
Yave	0.1	4	0.29			
Pinch Enhancement	1.5	51	1.47			
Beamstrahlung δ B (%)	5.	4	8.9			
Photons per e+/e-	1.	1.3		.3		
Two Linac Length (km)	13.8		27.6			

Todla . Darameters & I avout

Tesla : Parar	neters & Lay	out	
Accelerating gradient	$E_{acc} [\mathrm{MV/m}]$	23.4	
RF-frequency	f_{RF} [GHz]	1.3	
Fill factor		0.747	
Total site length	L_{tot} [km]	33	
Active length	$[\mathrm{km}]$	21.8	
No. of accelerator structures		21024	
No. of klystrons		584	
Klystron peak power	[MW]	9.5	
Repetition rate	f_{rep} [Hz]	5	
Beam pulse length	$T_P [\mu s]$	950	high e
RF-pulse length	T_{RF} [μ s]	1370	
No. of bunches per pulse	n_b	2820	
Bunch spacing	$\Delta t_b [\mathrm{ns}]$	337	
Charge per bunch	$N_e [10^{10}]$	2	
Emittance at IP	$\gamma \varepsilon_{x,y} \ [10^{-6} \mathrm{m}]$	10, 0.03	
Beta at IP	$\beta_{x,y}^* [\text{mm}]$	15, 0.4	
Beam size at IP	$\sigma_{x,y}^*$ [nm]	553, 5	
Bunch length at IP	σ_z [mm]	0.3	
Beamstrahlung	$\delta_E [\%]$	3.2	
Luminosity	L_{e+e-} [10 ³⁴ cm ⁻² s ⁻¹]	3.4	
Power per beam	$P_b/2 [\mathrm{MW}]$	11.3	
Two-linac primary electric power	P_{AC} [MW]	97	
(main linac RF and cryogenic systems)			
e^-e^- collision mode:			
Beamstrahlung	$\delta_{E,e-e-}$ [%] L_{e-e-} [10 ³⁴ cm ⁻² s ⁻¹]	2.0	
Luminosity	$L_{e-e-} [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	0.47	

Positron Sources

- Positron Production
 - Conventional
 - Target high energy electron beam onto a few radiation lengths of a target made of a high-z, high density material
 - This was the technique used at the SLAC Linear Collider
 - Undulator-Based
 - Use a very high energy beam to make multi-MeV photons in an undulator
 - Target these photons onto a thin target to make positrons
 - If the undulator is helical, the photons will be circularily polarized and hence the positrons will be polarized
 - Compton backscattering
 - Backscattering a high optical laser beam high produced high energy polarized photons that can then produce positron in a thin target
- The systems for capturing the produced positrons and producing usable beams are fairly independent of the method of positrons production
 - e.g. in the NLC, the target is followed by SLC-like matching device (6-7 T flux concentrator). The positrons are then captured in a L-band RF system and accelerated to 250 MeV, focused by high-gradient solenoids and then accelerated to the damping ring energy (1.98 GeV) in an L-band accelerator. The beam is then damped in a series of two damping rings

CONVENTIONAL: NLC Positron Source Parameters

(beam delivered to positron pre-damping ring)

Parameter Name	Symbol	Injector Output		Units
Bunch Spacing	T _b	2.8	1.4	ns
Energy	Е	1.98	1.98	GeV
Energy Adjustability	ΔE	±5	±5	%
Bunch Energy Variation	δΕ/Ε	1	1	% Full Width
Single Bunch Energy Spread	σ_{E}/E	2	2	% Full Width
Emittance (norm. edge)	$\gamma \epsilon_{\rm x,v}$.03	.03	m-rad
Bunch Length	σ_Z	<10	<10	mm
Particles/Bunch	$n_{\rm B}$	1.8	0.9	10 ¹⁰ particles
Train Population Uniformity	$\Delta n_T/n_T$	1	1	% Full Width
Bunch-to-Bunch Pop. Uniformity	$\Delta n_{\rm B}/n_{\rm B}$	2	2	% rms
Number of Bunches	N _b	96	192	#
Repetition Rate	f	120	120	Hz
Horizontal Beam Jitter	$\Delta \gamma J_x$.015	.015	m-rad
Vertical Beam Jitter	$\Delta \gamma J_{v}$.015	.015	m-rad
Beam Power	P _b	65	65	kW

NLC Positron Injector

Electron Drive Linac Parameters

(for the NLC Positron Source)

Drive Linac Electron Beam Parameters:

Parameter Name	Symbol	Out	put	Units
Bunch Spacing	T _b	2.8	1.4	ns
Energy	Е	6.2	6.2	GeV
Bunch Energy Variation	δΕ/Ε	1	1	% Full Width
Single Bunch Energy Spread	σ_{E}/E	1	1	% Full Width
Emittance (norm. rms)	$\gamma \epsilon_{\mathrm{x,v}}$	100.0	100.0	10 ⁻⁶ m-rad
Bunch Length	σ_Z	1.6	1.6	microns
Particles/Bunch	$n_{\rm B}$	3.0	1.5	10 ¹⁰ particles Yuri's Yield=0.6
Train Population Uniformity	$\Delta n_T/n_T$	1	1	% Full Width
Bunch-to-Bunch Pop. Uniformity	$\Delta n_{\rm B}/n_{\rm B}$	2	2	% rms
Number of Bunches	N_b	96	192	#
Repetition Rate	f	120	120	Hz
Horizontal Beam Jitter	X/σ_x	10	10	%
Vertical Beam Jitter	Y/σ_v	10	10	%
Beam Power	P _b	339	339	kW

SLC Positron Target

The NLC target design uses the operational experience gained from the SLC.

SLC positron target made of 6 r.l. W-Re. "Trolling target". Was made so that average heating would not damage the target

SLC drive beam is 30 GeV, 4 x 10¹⁰ e⁻/bunch, 1 bunch/pulse, 120 pulses/sec, 24 kW

NLC Positron Target

NLC positron target design – extrapolated from the SLC positron target

NLC spinning target design.

20 cm. dia. W Re target ring. 23 kW deposited

Oscillating at 1/2 Hz.

Beam rate is 120 Hz.

Spinning shaft with water and vacuum seals.

Extrapolation to NLC Drive Beam Power

- NLC target made bigger to allow for greater average beam power (340 kW as compared with 24 kW)
- The energy deposition for a single pulse in the NLC target is calculated to be below the level that will damage the target material.
- The SLC was thought to be a factor of two below damage threshold
- BUT
 - The SLC positron target failed (after 5 years of operation)
 - Failure lead to a detailed analysis of materials properties: radiation damage, shock and stress, fatigue, etc.

Positron target damage threshold analysis

- R&D Effort How best to design our way around this problem
 - SLC target materials analysis at LANL (L. Waters, S. Maloy, M. James, et al)
 - Shock & dynamic stress and radiation damage analysis at LLNL (W. Stein et al)
 - Old NLC baseline design has stresses in excess of fresh target strength
 - Analysis of coupon tests to validate analyses at LLNL (A. Sun-Woo)
 - Design of improved W Re target material at LLNL (A. Sun-Woo)
 - Yield simulations to determine electron beam power (Y. Batygin)
 - Investigations of other target materials; Cu, Ni (as at FNAL pbar source)
 & liquid metal (Pb) targets at BINP (G. Silvesterov, et al)
 - Beam tests of the target design at SLAC
- Analysis leads to new e⁺ source designs
 - 1. Divide the bunch train into lower power trains
 - 2. Spread the beam in time to alleviate instantaneous shock stress

Positron system yield calculations

Start-to-End simulation of yield (e⁺/e⁻), from e⁺ out of target (from EGS)to pre-DR

Allows optimization of

spot size

collection

RF phasing

energy compression

target material: WRe, Cu, Ni, ...

• Yield of 0.76 e⁺/e⁻ gives:

NLC	4RL W ₂₅ Re	6.2 GeV	190 x 1.2 x10 ¹⁰	1.6 mm	125 J/g
SLC	6RL W ₂₅ Re	33 GeV	1 x 4x10 ¹⁰	0.8 mm	28 J/g

EGS results for maximum energy deposition

SLAC Target Damage

SLC target damage studies were done at LANL. Results show evidence of cracks, spalling of target material and aging effects.

SLC target materials analysis at LANL

The SLC positron target was cut into pieces and metalographic studies done to examine level of deterioration of material properties due to radiation exposure.

Indents along Beam Direction

Hardness for SLAC target

Coupon Tests of Target Material in SLAC BEAM

Results from irradiating W-Re at different energy depositions using SLAC beam focused down to small spots (1 x 10^{10} electrons , 45 GeV, focused to small spots)

Tests done with Ti, Cu, GlidCop, Ni, Ta, W and W-Re

Pictures show that target material melts before showing obvious evidence of shock/stress effects. Results not completely understood.

Shock & Stress Calculations

- Calculations done at LLNL
 - Shock, stress, thermal heating effects investigated
- Conclusions
 - SLC target should have been fine
 - However target aging could have reduced tensile strength of material and cracks in target may cause local heating
 - Shock and stress effects have timescales of about a microsecond, so spreading out beam in time may help
- PAC2001 Paper

THERMAL SHOCK STRUCTURAL ANALYSES OF A POSITRON TARGET

W. Stein, A. Sunwoo, LLNL,* Livermore, CA, USA
V.K. Bharadwaj, D.C. Schultz, J.C. Sheppard, SLAC,* Stanford, CA, USA

Positron target – multiple stations

Do not feel comfortable with energy depositions beyond SLC, therefore NLC baseline changed to incorporate multiple targets. An RF multiplexed e⁺ source system

The 192 bunches in a train are sequentially dealt to N targets Each target sees 1/N the shock & stress & heating NLC baselines has three targets stations (and one spare)

3 out of 4 target system schematic

RF multiplexed positron source

Transverse layout

- 4 targets: 3 operating, 1 spare/repair
- Access and 5m shielding between vaults sets scale
- Detailed design needed

Chicane makes up for small difference in path lengths, correcting for exit line length differences as well.

NLC Source Parameters – 3 target stations

PARAMETER NAME	SYMBOL	VALUE	UNITS
Bunch Spacing	Тв	1.4 (2.8)	ns
TARGET			
Drive Beam Energy	Е	6.2	GeV
Drive Beam Energy Spread	ΔE	1	% full width
Electrons/Bunch on Target	n_B	1.5 (3)	10 ¹⁰ particles
e Bunch-to-Bunch Pop. Uni.	$\Delta n_B/n_B$	< 0.5	% rms
Number of Bunches	N_{B}	63 (32)	#
Incident Beam Radius	σ_{r}	1.6	mm rms
Repetition Rate	f	120	Hz
Drive	P_{b}	113	kW
Target Material		$W_{75}Re_{25}$	
Target Thickness	L_{T}	4	Rad. Length
Peak Energy Deposition	$\Delta E/\Delta vol$	35	J/g
Absorbed Target Power	P_T	16	kW
POSITRON CAPTURE			
RF Frequency	f_{rf}	1428	MHz
Bunch Length	ΔΤ	60	ps full width
Capture Energy	Ec	250	MeV
Capture Emittance (norm. edge)	$\gamma \varepsilon_{\mathrm{x,v}}$	0.03	m-rad
Pre-DR Acceptance (norm.)	γΑ	0.045	m-rad
Yield@ 250 MeV	Ϋ́c	1.4	e ⁺ /e ⁻
Yield@ 1.98 GeV into $\gamma A = 0.03$ m-rad	Y _{PDR}	1.0	e ⁺ /e ⁻

Stretched pulse positron source scheme Basic Idea

- Timescales
 - Instantaneous shock timescale is microseconds.
 - Temperature dissipation timescales are ~ 0.1 seconds
 - stress levels due to temperature gradient (500 °C) are lower than instantaneous shock
- Consider spreading out the NLC drive beam
 - In time (to 25 μ s)... to reduce instantaneous shock
 - The concept comes out of the LLNL analysis
 - In space ... to reduce local temperature rise
 - Spin the target at 4000 RPM to get temperature gradient ~200 °C

Stretched pulse positron source scheme Drive Beam Format

Standard NLC Bunch Train, 95 Bunches @ 2.8 ns Spacing

Alternate Drive Beam Format

4 Sub-trains of 24 Bunches @ 11.2 ns spacing

Undulator-Based Positron Sources

- The undulator based sources are advantageous because
 - Conventional targets many radiation lengths, need to use high density, high-z materials to avoid emittance blowup of the produced beam
 - Undulator-based positron targets are fractions of a radiation length
 - Can use stronger materials such as Ti-alloys
- The original TESLA linear collider design always had undulator based positron production
 - The very high energy electron beam that is needed to produced the multi-MeV photons in the undulator is in fact the "spent" electron beam after the collider collision point.
 - This scheme places limits on collision energy because the electron beam has to have enough energy to be able to produced the needed multi-MeV photons in the undulator
 - The positron sources performance is affected by the need to tune the collision energy which in affects the positron yield, positron system tuning.
 - The TESLA undulator for making the multi-MeV photons is planar. Planar undulator are straightforward to make, but cannot produce polarized photons and hence polarized positrons. Also helical undulators can be a factor of 2 shorter
- US Linear Collider Group (USLCG) has adopted undulator-based positron sources in its base line

USLCG: Undulator-Based Positron Systems

US LC physics requirements specified by the USLCSG Physics/detector Subcommittee

- initial energy 500 GeV c.m.
- upgrade energy: at least 1000 GeV c.m.
- electron beam polarization > 80%
- an upgrade option for positron polarization
- integrated luminosity 500 fb⁻¹ within the first 4 yrs of physics running, corresponding to a peak luminosity of 2x10³⁴cm⁻²s⁻¹.
- beamstralung energy spread comparable to initial state radiation.
- site consistent with two experimental halls and a crossing angle.
- ability to run at 90-500 GeV c.m. with luminosity scaling with E_{cm}

G. Dugan, NLC Coll. 6/17/03

USLCG: Undulator-Based Positron Systems

Warm option reference design

New features of 2003 NLC configuration:

- SLED-II pulse compression
- 2-pack modulator
- 60 cm, 3% v_g HDS structures
- EM quads in linac
- Improved damping ring design
- Improved positron source
- BNL-style SC final focus doublet
- "Low-energy" IR reach improved to 1.3 TeV

Differences between the warm option reference design and the

2003 NLC design:

- The use of an undulator based positron source, utilizing the high energy electron beam at 150 GeV, instead of the conventional positron source
- At the subsystem and component level, specification changes to facilitate comparison with the cold LC option.
 G. Dugan, NLC Coll. 6/17/03

USLCG: Undulator-Based Positron Systems

Cold option reference design

The major changes to be made to the TESLA design are:

- An increase in the upgrade energy to 1 TeV (c.m.), with a tunnel of sufficient length to accommodate this in the initial baseline.
- Use of the same injector beam parameters for the 1 TeV (c.m.) upgrade as for 500 GeV (c.m.) operation
- The choice of 28 MV/m as the initial main linac design gradient for the 500 GeV (c.m.) machine.
- The use of a two-tunnel architecture for the linac facilities.
- An expansion of the spares allocation in the main linac.
- A re-positioning of the positron source undulator to make use of the 150 GeV electron beam, facilitating operation over a wide range of collision energies from 91 to 500 GeV
- The adoption of an NLC-style beam delivery system with superconducting final focus quadrupoles, which accommodates both a crossing angle and collision energy variation.
- At the subsystem and component level, specification changes to facilitate comparison with the warm LC option.
 G. Dugan, NLC Coll. 6/17/03

Generic Undulator-Based Collider

- Produce multi-MeV gammas using a long undulator and >150 GeV electron beam
- Multi-MeV gammas pair produce in a thin (0.2 RL) converter
- Positron are collected by flux concentrator/L-band rf/solenoid system
- Use of high strength titanium alloys mitigates target damage problems
 - Use extracted beam from part of electron linac instead of the spent beam after collisions
 - If helical undulator, then circularly polarized gammas and polarized positrons
 - Two target stations for redundancy/reliability

USLCG Positron Source Parameters

	TESLA TDR	Unpolarized	Polarized	Conventional
Drive Beam Energy [GeV]	250	153	153	6.2
Beam Energy Loss [GeV]	3.0	4.9	6.5	-
Beam Energy Spread In [%]	0.05	0.50	0.50	-
Beam Energy Spread Out [%]	0.10	0.46	0.46	-
Additional Linac Length [m]	120	95	126	230
Undulator Length [m]	100	150	200	-
Undulator Insertion Length [m]	340	790	850	-
Positron Source Length [m]	400	450	450	450
Photon Energy [MeV]	28.0	10.7	10.7	-
Undulator type	K=1; Planar	K=1; helical	K=1; helical	-
Undulator Field [T]	0.75	1.07	1.07	
Undulator Period [cm]	1.4	1.0	1.0	-
Undulator Full Gap [mm]	5	6	6	-
Pulse Energy on Target [kJ]	26.9	1.1	1.1	0.7
Average Power on Target [kW]	135	136	126	85
Spot Size on Target [mm]	0.75	0.75	0.75	1.6
Target Material	Ti-alloy	Ti-alloy	Ti-alloy	W74-Re26
Target Thickness [r.l.]	0.4	0.4	0.4	4.0
Target Energy Adsorption [%]	4	9	8	14
Beam Polarization [%]	0	0	59	0
Positron Yield	2.0	1.4	1.5	1.5

USLCG Positron Production Schematic – Undulator Based

NLC/USLCSG Polarized Positron System Layout

Undulator Lattice Half Cell

[Undulator Module Parameters: Helical, K=1, λ_u =1 cm (B₀=1.07 T), ID=6-7 mm, L_u=2.0 m]

Undulator-based positron system is described in USLCSG Cold Reference Design Document

USLCG Positron Target Parameters

	TESLA TDR	Unpolarized	Polarized	Conventional
Pulse Energy on Target [kJ]	26.9	1.1	1.1	0.7
Average Power on Target [kW]	135	136	126	85
Spot Size on Target [mm]	0.75	0.75	0.75	1.6
Target Material	<i>Ti-</i> alloy	Ti-alloy	Ti-alloy	W74-Re26
Target Thickness [r.l.]	0.4	0.4	0.4	4.0
Target Energy Adsorption [%]	4	9	8	14
Target Radius [m]	0.400	0.125	0.125	0.125
Revolution Rate [rpm]	1200	46	46	46
Pulsed Temperature Rise [deg	420	530	530	200
Number of Targets/Spares	1/0	1/1	1/1	3/1

E-166 Update

E-166

Undulator-Based Production of Polarized Positrons

A proposal for the 50 GeV Beam in the FFTB

K.T. McDonald and J.C. Sheppard, co-spokesmen

E-166 Experiment

E-166 is a demonstration of undulator-based polarized positron production for linear colliders

- E-166 uses the 50 GeV SLAC beam in conjunction with 1 m-long, helical undulator to make polarized photons in the FFTB.
- These photons are converted in a ~0.5 rad. len. thick target into polarized positrons (and electrons).
- The polarization of the positrons and photons will be measured.

"What are we interested in"

- Material damage thresholds
 - How do the thresholds change as a function of time in the beam
- How good are calculations
 - Fatigue due to both thermal and radiation effects
 - Comparisons with experiments, what has been done and what can be done
- High radiation environments
 - Design of stations
 - Maintenance of target stations
 - Does one fix broken targets or just put new ones in
 - Remote handling and robotics
- Superconducting adiabatic matching device ("flux concentrator")

Summary

- Target for linear collider positron production have high thermal, shock and stress parameters
- Solutions exist for producing needed positron beams for linear colliders
- Conventional systems require multiple target stations
- Might be able to spread beam out in time and get away with only one operating target station
- Undulator-based system are very promising, not only because the target thermal, shock and stress problems are alleviated, but also because the possibility exists for polarized positron beams
- Need to understand radiation damage in Ti-alloys
- E166 experiment approved to demonstrate polarized positron production feasibility