Target Systems for the Spallation Neutron Source

Presented by
John R. Haines
at the
High-Power Targetry for Future Accelerators
September 8-12, 2003
The Spallation Neutron Source

- Partnership of 6 labs (LBL, LANL, JLAB, BNL, ORNL, and ANL) under direction of ORNL
- World’s most powerful neutron science facility
- $1.4B project, with completion in 2006
- Pulsed proton beam creates neutrons by spallation reaction with Hg target
SNS Project

Technical Parameters

- Beam power > 1 MW
- Beam energy 1 GeV
- Pulse repetition rate 60 Hz
- Pulse length 700 ns
- Neutron beam ports 24

Status

- Overall project is 68% complete and within budget and schedule constraints
 - $1.4B and June 2006 completion
 - Target Systems is 60% complete
- Overall project design is 92% complete
 - Target Systems design is 100% complete
Technical Scope of Target Systems

- **Target**
 - Mercury
 - Replaceable Vessel

- **Moderator**
 - Wing configuration
 - One ambient water
 - Three cryogenic supercritical H_2

- **Reflector**
 - Be

- **Vessel Systems**
 - Encloses components that need to be replaced routinely

- **Target Systems Shielding**
 - Steel
 - Vertical Shutters

- **Target Systems Utilities**
 - Heavy & light water
 - He and vacuum

- **Remote Handling Systems**
 - Target module
 - Mercury process equipment
 - Reflector/moderator plugs
 - Proton beam window
 - Shutters/Inserts

- **Local I&C**

- **Beam Dumps**
 - LINAC dump
 - Ring injection dump
 - Ring extraction dump

- **Neutronics and shielding analysis**
 for entire SNS complex

The Hg target, shielding, and maintenance systems will be a Nuclear Facility that must be designed in accordance with appropriate safety requirements.
Global View Of The SNS Target and Scientific Instrument Station

- Bulk Shielding, Shutters, Moderators, Reflectors, Hg Target, Neutron Guides
- Maintenance Systems
- Proton Beam
- Neutron Scattering Instruments
- Test Stand
- Utility Vault

SNS Experimental Facilities

Oak Ridge
Target Region Within Core Vessel

- Target Module with jumpers
- Outer Reflector Plug
- Target Inflatable seal
- Core Vessel water cooled shielding
- Core Vessel Multi-channel neutron guide flange
- Moderators
Target Systems Installation Has Started

- Equipment installation occurs while the building is being constructed
- Major components have been installed
 - Base plate
 - Outer liner
 - Inner and outer support cylinders
 - Drain tanks and Bulk shield liner drain line
 - Shield blocks
CFD Results Predict Recirculation Zone Near Flow Baffles
Mercury Loop Parameters @ 2 MW

- **Power absorbed in Hg**: 1.2 MW
- **Nominal Operating Pressure**: 0.3 MPa (45 psi)
- **Flow Rate**: 340 kg/s
- **Vmax (In Window)**: 3.5 m/s
- **Temperature**
 - Inlet to target: 60°C
 - Exit from target: 90°C
- **Total Hg Inventory**: 1.4 m³ (20 tons)
- **Pump Power**: 30 kW
- **Reynolds Number**: 1.4×10^6 bulk flow
- **Pr**: 0.014

SNS Hg Target operates at low temperature and pressure
Target R&D Program Has Addressed Key Design and Operational Issues

• Steady state power handling
 – Cooling of target/enclosure window - wettability
 – Hot spots in Hg caused by recirculation around flow baffles

• Thermal Shock
 – Pressure pulse loads on structural material
 – Cavitation induced erosion (so-called pitting issue)

• Materials issues
 – Radiation damage to structural materials
 – Compatibility between Hg and other target system materials

• Demonstration of key systems:
 – Mercury loop operation
 – Remote handling
Three Thermal-Hydraulic Loops Were Constructed to Develop the Mercury Target

Mercury Thermal Hydraulic Loop (MTHL)
- Wettability
- Design data for target window
- Corrosion/erosion test

Water Thermal Hydraulic Loop (WTHL)
- Recirculation zone
- Flow stability

Target Test Facility (TTF)
- Full-scale loop
- Final CFD benchmark
- Verify Hg process equipment
- Operational experience
Rapid heating process leads to large pressure pulse in mercury

- Peak energy deposition in Hg for a single pulse = 13 MJ/m³
 - Peak temperature rise is only ~ 10 K for a single pulse, but rate of rise is 14 x 10⁶ K/s!
- This is an isochoric (constant volume) process because beam deposition time (0.7 µs) << time required for mercury to expand
 - Beam size/sound speed ~ 33 µs
- Local pressure rise is 34 MPa (340 atm compared to static pressure of 3 atm!)
Cavitation Bubble Collapse Leads to Pitting Damage

- Large tensile pressures occur due to reflections of initial compression waves from steel/air interface.
 - These tensile pressures break (cavitate) the mercury.
 - Damage is caused by violent collapse of cavitation bubbles under subsequent interaction with large compression waves.
- A series of tests were conducted at LANLs WNR facility to examine sensitivity of pitting damage to various parameters, materials, and mitigation schemes
 - 100 - 1,000 pulses
 - Stagnant Hg inside closed targets
 - Examined highly polished surfaces before and after irradiation to quantify damage
- Extrapolation to > 10^8 pulses performed using off-line pressure pulse tests
Summary of WNR Pitting Tests

- Several test cases showed significantly reduced erosion on the front wall specimen.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Normalized Erosion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas layer near surface</td>
<td>0.06</td>
</tr>
<tr>
<td>Bubble Injection</td>
<td>0.25</td>
</tr>
<tr>
<td>Kolsterized surface</td>
<td>0.0008</td>
</tr>
<tr>
<td>1/2 Reference Power</td>
<td>0.09</td>
</tr>
</tbody>
</table>

* Erosion relative to reference (2.5 MW) case
Summary of Pitting Erosion Tests

Using this data, the estimated Mean Depth of Erosion at 1 MW for 2 weeks < 50 µm.

This is judged to be acceptable, but improvements must be pursued.
High Power Target Development Plans

- Plans are integrated with Japanese and European collaborators
- Examine irradiation damage resistance of Kolsterised layer
 - Measure hardness of specimens irradiated to ~ 1 dpa on HFIR
- Perform bubble injection tests on TTF in collaboration with ESS team and Univ of Tennessee (Fall 2003)
 - Measure bubble lifetime, saturation level, and pressure pulse attenuation
 - Examine performance of Hg loop with bubbles
- Perform in-beam tests with flowing Hg and bubble injection
 - Fabricate and test Hg loop in FY2004; perform in-beam tests in FY2005
 - Measure strain and pitting attenuation
Load Frequency and Mercury Contact Do Not Affect Fatigue Endurance Limits

Material - 316 LN

- Alternating Stress, MPa
- Cycles to Failure

- Test discontinued

\[R = \frac{\text{Minimum Stress}}{\text{Maximum Stress}} = 0.1 \]

- 10Hz in Air
- 10Hz in Mercury
- 0.1Hz in Mercury
- 1.0Hz in Air
- 0.1Hz in Air
- 1.0Hz in Mercury
Tensile Data for Spallation Conditions Fall within the Range of Reactor Database

Uniform Elongation
Database: Type 316 SS, Irradiated and Tested at 0 ~ 200°C

Data from LANSCE-irradiated specimens
Remote Handling Demonstration Tests Drove Design Improvements

- Target module handling procedure successfully demonstrated.
 - Used to check-out remote handling tools, handling fixtures, hot cell crane, and manipulators
 - Many design revisions to enable or simplify remote handling implemented based on results of mock-up tests
Target Systems’ Schedule

<table>
<thead>
<tr>
<th></th>
<th>FY99</th>
<th>FY00</th>
<th>FY01</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procure & Fab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **R&D**:
 - R&D Final Report
 - Issue TTF Summary Report

- **Design**:
 - Title I Rev
 - Decision Point for Hg or Solid Target
 - Complete Shutter Fab

- **Procure & Fab**:
 - Award Utility Sys Procurement
 - Complete Core Vessel Fab

- **Install**:
 - Hot Cell Access
 - Load Hg

- **Test**:
 - All beam dumps ready for beam
 - Ready for Beam on Target

- **Commission**:
 - Complete Sub-Project Acceptance Test
Concluding Remarks

• SNS Target Systems Design and R&D efforts are complete
 – Verified Hg “wettability” and flow stability
 – Gained operational experience with prototypical loop and equipment; avoided mistakes on SNS (leaky valves, cavitation, …)
 – Most critical remote handling issues addressed by constructing mockups and performing tests
 – Materials irradiation and compatibility issues addressed in separate tests
 ▪ Combined effects of irradiation with mercury and stress remain uncertain
 – Considerable progress has been made on the pitting issue, however significant uncertainties and associated risks remain
 ▪ Further R&D and target design efforts are underway within the framework of an international collaboration

• SNS Target Systems installation has commenced