

Ideas for a cooling experiment

Peter Gruber CERN/PS

◆ Phase space reduction

$$\frac{d\epsilon_n}{ds} = -\frac{1}{\beta^2} \frac{dE_{\mu}}{ds} \frac{\epsilon_n}{E_{\mu}} + \frac{1}{\beta^3} \frac{\beta_{\perp} (0.014)^2}{2E_{\mu} m_{\mu} L_R}$$

- lacktriangle In fact: not ϵ , but x' reduction
- ◆Three steps, each step (well) known

A cooling Experiment ...

- lacktriangleq All three steps integrated in one setup
- ◆ Possible cooling-killers taken into account
 - Misalignment
 - Scattering from rf windows, detectors
 - Straggling
 - rf defocusing
 - Measurement precision + statistics
- lacktriangle Measurement: $\varepsilon_{\rm in} > \varepsilon_{\rm out}$

Cooling experiment setup

- ◆ Prove principle
- ◆ Prove FNAL/other cooling scheme
- ◆ Measure cooling yield of FNAL/other scheme
- ◆ Second order effects
- ◆ Study collective effects

- ◆ If there is a need for a *fast*, cheap experiment that only proves, that ionization cooling is possible, then ...
 - strip down cooling channels as much as possible
 - think of similar layouts that are easier to build
 - focus on detection precision
 - cool only 2%, just to show it works
 - use single particle method + reconstruct beams
 - get fast results

- ◆ Cooling is a small effect
- ◆ Everything works against cooling
 - Misalignment
 - Scattering
 - Straggling
 - rf defocusing
 - Measurement precision + statistics
- ◆ Everything has to be *very* precise

Experiment Layout

Whole experiment in vacccum.

Key parameters

Muon momentum	$150~{ m MeV/c}$
Total rf voltage	6MV
Rf length	2m
Frequency	46MHz
Aperture	\varnothing 50cm
Absorber	$30\mathrm{cm}\;\mathrm{H}_2$
Budget for win+detect	1mm Al
Incoming rms x'	125mrad
Outgoing rms x'	122mrad
Detection precision	±2x0.2mrad

← Matched to TRIUMF beam (all muons arrive within 18deg phase)

Beam diagnostics - in

- ◆ Use 2 MWPC or GEM detectors
- Resolution = $40 \mu m$
- ◆Length=1cm
- ◆ Distance=40cm
- lacktriangle Angular resolution ≈ 0.2 mrad
- ◆ Beam should see as little material as possible
- ◆2x2x2 windows of 25µm Kapton
- ◆rf X-rays??

GEM detectors

Beam diagnostics - out

- ◆ Use MWPC/GEM and silicon detector
- ◆MWPC as before
- ◆ Silicon detector with 10µm resolution, energy detection, kills beam.
- Questions
 - Is the energy resolution of the silicon good enough?
 - If not, we need a more complicated setup of 3 detectors and a spectrometer magnet.

- ◆ Calculated with SFH, parameters as desired
- ◆1.4MV/m
- ◆50cm aperture, Al window
- ◆50cm length, 16cm gap
- ◆3.5 MW per cavity
- ◆ Field very uniform (±0.5%)
- ◆ Questions
 - Hope to absorb higher modes
 - Do Al windows (50µm) work?

Reconstruction

- ◆ Experiment yields a database of particle behaviors
- ◆Incoming beam can be freely chosen
- ◆ Outgoing beam reconstructed from incoming beam data
- ◆Analysis of most efficient beam shapes is possible

If we need energy

Summary

- ◆ Strengths
 - Fast
 - Cheap
 - Uses known technology

- ♦ Weaknesses
 - We don't learn a lot
 - Very different to NF cooling
 - May hold up research

- ◆ Opportunities
 - Prove cooling within 1-2 years
 - May help promoting NF to non-physicists

- **♦** Threats
 - If it does not work, "major blow for NF" (E. Keil)
 - rf cavity is biggest risk