Magnetic Design of FFAG Superconducting Magnets

T. Ogitsu

M. Yoshimoto

M. Aiba

FFAG Magnet Magnetic Field Requirement

$$B(r) = B_0 \left(\frac{r}{r_0}\right)^k$$

- *Optics people wants B₀ and k changeable....
- •Normal conducting magnet > iron defined field
- •Superconducting magnet > current defined field

Conventional SC magnets for Accelerator

- Cosine theta design
 - For example: Dipole
 - Cos(n θ) > 2n-pole magnet
- Well established for
 - Dipole, Quadrupole
 - ~ 8T ~5cm aperture
 - ~5T ~20cm aperture
 - Higher order coils
 - Smaller coils but some are combined with larger main coil

What to do with FFAG field?

What about combination of multipole fields

$$B(r) = B_0 \left(\frac{r}{r_0}\right)^k$$

$$= B_0 + \frac{k}{r_0} B_0 r + \frac{k(k-1)}{2! r_0^2} B_0 r^2 + \frac{k(k-1)(k-2)}{3! r_0^3} B_0 r^3 + \dots$$

Combined Multipole Coil?

- Can change B₀ and k in wide range within the conductor limit.
- Can even change the field profile.
- Isn't it too complicated?
 - Magnetic force?
 - Can be expensive...

Let's make it SIMPLE!

Required current distribution

Sum of all cosine theta current

 \bigvee

Asymmetric Coil
Need R&D!

Elliptic Structure

- Large beam excursion
 - Requires large aperture
 - Large Stored Energy
 - Difficult to protect
 - More superconductor
 - More money

Elliptic Structure

Need R&D as well

K corrector

- K correction?
 - Does it need to be wide range?
 - If not, first order correction

$$B(r,k+\Delta k) = B_0 \left(\frac{r}{r_0}\right)^{k+\Delta k}$$

$$\sim B(r,k) + \frac{dB(r,k)}{dk} \Delta k$$

$$\sim B_0 \left(\frac{r}{r_0}\right)^k + B_0 \left(\frac{r}{r_0}\right)^k \ln\left(\frac{r}{r_0}\right) \Delta k$$

 $B_0 = 4.5$, $r_0 = 200$, k = 620, $\delta k = 10$, 20, 40 Red lines represent definite equation, while Blue lines represent first order approximation.

Current distribution can be derived using the same method as that of main coil

• $B_0=5.75T$, $r_0=200m$, k=680, beam excursion 20.3m

1. Main Coil

- Asymmetric & Elliptic
- Rutherford Cable 2X15mm
- Operation Current 7.5kA
- Stored Energy: ~0.9MJ/m

2. Corrector Coil

- Wind & glue (BNL)
- ~10A/delta-K

3. Collar

- Pre-stress ~80MPa
- Horizontal EMF ~ 3.7 MN
- Aluminum collar to gain pre-stress during cool down

4. Iron Yoke

- Off centered yoke for EMF balance
- Warm Iron

Reference Design 1 Coil Cross Section

Field Map & Beam Aperture

165mm

Operation Margin

Reference Design 1 Field quality of main coil

Reference Design 1 k corrector

- Summary
 - Asymmetric Elliptic Coil
 - Warm Off Centered Yoke
 - First Order Delta-k Correction Coil
- Issues to be studied
 - 3d end design
 - Coupling between main and corrector coil
 - Detailed mechanical analysis
 - Quench protection

• $B_0=7.73T$, $r_0=120m$, k=330, beam excursion 25.1m

1. Main Coil

- Asymmetric & Elliptic
- Rutherford Cable 2X15mm
- Operation Current 9kA
- Stored Energy 1.5MJ/m

2. Corrector Coil

- Wind & glue (BNL)
- 25A/delta-K

3. Collar

- Pre-stress ~150MPa ?need to study insulator?
- Horizontal EMF ~ 6.4 MN
- Aluminum collar to gain pre-stress during cool down

4. Iron Yoke

- Off centered yoke for EMF balance
- Warm Iron

Field Map & Beam Aperture

Operation Margin

Reference Design 2 Field quality of main coil

Reference Design 2 k corrector

Reference Design 2 Summary

- Reference design 1 concept can be used as well, except.
 - Pre-stress requirement exceed usual Rutherford cable insulation limit...

Scott 10-20GeV QF

Scott 10-20GeV DF

End Dipole Example

JHFD2LE2.data, Dipole LE Based on JHD2end4.data, Optimized by JHFD2l02/09/05 11:47

End Quad Example

Quad (R=90mm) for JHFNu, LHCDi-Out w/ MQXA ins. Ryoke=125mm, RE Optimized 02:37

End Spacer for JHFQ2RE.data

02/11/04 02:34

ROXIE82