Bunch Merging Muon Collider Design Workshop 3–7 December, 2007

J. C. Gallardo, R. Fernow, R.B. Palmer

gallardo@bnl.gov

Outline

Introduction Beamline: Schematics 1-D Simulation ICOOL Simulation: Initial Beam Drift Wiggler Results

Bunch Merging Introduction

Collider luminosity is proportional to N_{μ}^2 of the number of muons per bunch; so its best to use few bunches, ideally one. Capturing the initial pion/muon phase space directly into a single bunch requires low frequency (\leq 30 MHz) rf, and thus low gradients \equiv more decays. It is more advantageous to capture into multiple bunches at 201 MHz and allow them, after cooling, to be recombined into a single bunch (still at low energy).

Introduction II

This recombination is done in two stages:

- Drift followed by
- 201 MHz rf, with harmonics, the individual bunches are phase rotated to fill the spaces between bunches and lower their energy spread;
- 5 MHz rf, plus harmonics, interspersed (or not) along a long drift (or wiggler) to phase rotate the train into a single bunch that can be captured using 201 MHz.

Bunch Merging Beamline

SCHEMATICS: BUNCH MERGER BEAMLINE

There is an overall solenoidal field B= 1 T, except on the wiggler.

Bunch Merging 1-D Simulation (Palmer)

1-D Simulation: a) before (blue) and after 1st rotation (red);
b) after 2nd rotation.

Icool simulation: Initial Beam

Initial longitudinal phase space, showing 21 bunches(LEFT); weight distribution (RIGHT).

 $\epsilon_T = 1.45 \ mm - rad, \ \epsilon_L = 1.6 \ mm$ (all bunches $\epsilon_L = 331 \ mm$); $< p_z >= 0.2 \ GeV/c$.

Icool simulation: Drift (Fernow)

Long phase space at entrance of wiggler

Notice that the lower energy particles are ahead in the bunch train; $L_{train} \approx 30 \ m.$

12/3-7/2007 – p. 9

Planar Wiggler

■ $B_0 = 0.775 \ T$, $\lambda_s = 2 \ m \text{ and } k_y = 2.75$ ■ $B_x(s) \approx -B_0 k_x^2 xy \cos(k_s s + \phi_0)$ ■ $B_y(s) \approx B_0 \cos(k_s s + \phi_0)$ ■ $B_s(s) \approx -B_0 k_s y \sin(k_s s + \phi_0)$ with $k_x^2 = k_s^2 - k_y^2$

• Wiggler parameter $K_{\mu} = \frac{qB_0}{m_{\mu}ck_s} \approx$ $93.44B_0[T]\lambda_W[m] \times \frac{m_e}{m_{\mu}} = 0.452B_0[T]\lambda_W[m]$

Planar Wiggler II

back of the envelope calculation

$$<\beta_s>\approx 1-\frac{1+K_{\mu}^2/2}{2\gamma^2}$$

Momentum compaction factor $\alpha_c = \frac{\Delta L}{L\delta} \approx (\gamma^2 - 1) \frac{(1 + K_{\mu}^2/2)}{\gamma^4}$

Distance for the tail of the train to catch up with the front $s = L_{train} \frac{m_{\mu}^2}{p\Delta p} \frac{\gamma^3}{(1+K_{\mu}^2/2)} \approx 163 m$

Results: Planar Wiggler

Long phase space at the end of the wiggler (LEFT); at the end of the bucket formation section (RIGHT). Decay $\approx 25 \%$ $\epsilon_T \approx 1.8 mm$ $\epsilon_L \approx 109 mm$ Efficiency $\approx 47\%$ $\sigma_E \approx 38 MeV$ Length channel=366 m

Results: Klystron

Long phase space at the end of the wiggler (LEFT); at the end of the bucket formation section (RIGHT). Decay $\approx 25 \%$ $\epsilon_T \approx 2.3 mm$ $\epsilon_L \approx 87 mm$ Efficiency $\approx 52\%$. $\sigma_E \approx 39 MeV$

Length channel=408 m

12/3-7/2007 - p. 13

Circular wiggler

12/3-7/2007 – p. 14

Conclusions

Wiggler to hasten the bunch merging is promising; but efficiency need to be significantly improved

MUCH MORE WORK IS NEEDED

