Analysis of Induction Linac Concept for High Gradient p+ Driver

Anatoly Krasnykh
(Klystron Dept. of SLAC)
for
A Muon Collider Design Workshop
Outline

• Introduction. Items for Consideration
• Accelerating Gradient in Induction Linacs
• Analyze Ways How to Increase Gradient
• High Gradient (HG) of Solid State Approaches
• SLIM©: SLAC Induction Module (or Method)
• Conclusion
Preliminary Remarks

- There are many publications where specific problems and recent achievement for the induction linac are discussed (see for example, the presented talks on the International Workshop titled as “Recent Progress in Induction Accelerators for Future Beam Inertial Fusion and Hadron Colliders”, KEK, 2002)

- Because LIA technology has been one subject of my earlier professional field of activity, I continue to review publications and the progress in the USA, France, Japan, Korea, China, Russia, and another countries

- Research reproducing LIA technology has not produced a significant increase in accelerating gradient. Is there a technology limitation?

- The presentation will focus on the aspects of induction linac technology which are not covered adequately. A breakthrough is likely
Items for Consideration

- Can an induction linac approach compete with the classical RF technologies?
- An accelerating gradient of existing induction linacs is weaker than classical rf-linacs. Why is this? Can the induction linacs possess the accelerating gradient similar to rf-linac gradients?
- A typical pulse width for an induction system is several tenth of nanoseconds (let’s say 30-100 nsec). Can the induction system deals with 10 times shorter pulses?
- Results of pioneer R&D’s that were devoted to the HG induction linac concept and the present solid state coreless concepts (SLIM©)
Linear Induction Linacs

<table>
<thead>
<tr>
<th>Accelerator</th>
<th>Laboratory</th>
<th>Year</th>
<th>Current (kA)</th>
<th>Energy (MeV)</th>
<th>Pulse (ns)</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astron-I</td>
<td>LLNL (US)</td>
<td>1963</td>
<td>0.35</td>
<td>4</td>
<td>250</td>
<td>Fusion</td>
</tr>
<tr>
<td>Astron-II</td>
<td>LLNL (US)</td>
<td>1968</td>
<td>0.85</td>
<td>6</td>
<td>300</td>
<td>Fusion</td>
</tr>
<tr>
<td>ERA</td>
<td>LBL (US)</td>
<td>1970</td>
<td>0.9</td>
<td>4</td>
<td>60</td>
<td>Fusion</td>
</tr>
<tr>
<td>NBS</td>
<td>NBS (US)</td>
<td>1975</td>
<td>1.0</td>
<td>0.8</td>
<td>2000</td>
<td>Development</td>
</tr>
<tr>
<td>LIU -10</td>
<td>VNIIEF (RU)</td>
<td>1977</td>
<td>50</td>
<td>14</td>
<td>20</td>
<td>Effects</td>
</tr>
<tr>
<td>ETA</td>
<td>LLNL (US)</td>
<td>1978</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>Development</td>
</tr>
<tr>
<td>FXR</td>
<td>LLNL (US)</td>
<td>1982</td>
<td>3</td>
<td>18</td>
<td>65</td>
<td>Radiography</td>
</tr>
<tr>
<td>ETA II</td>
<td>LLNL (US)</td>
<td>1983</td>
<td>2</td>
<td>6</td>
<td>70</td>
<td>Development</td>
</tr>
<tr>
<td>ATA</td>
<td>LLNL (US)</td>
<td>1984</td>
<td>10</td>
<td>45</td>
<td>80</td>
<td>Propagation</td>
</tr>
<tr>
<td>RADLAC-II</td>
<td>SNLA (US)</td>
<td>1985</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>Propagation</td>
</tr>
<tr>
<td>LIU-30</td>
<td>VNIIEF (RU)</td>
<td>1989</td>
<td>100</td>
<td>40</td>
<td>20</td>
<td>Effects</td>
</tr>
<tr>
<td>DARHT-I</td>
<td>LANL (US)</td>
<td>1999</td>
<td>1.7</td>
<td>20.0</td>
<td>60</td>
<td>Radiography</td>
</tr>
<tr>
<td>ARIX</td>
<td>PEM (FR)</td>
<td>1999</td>
<td>1.9</td>
<td>19.2</td>
<td>60</td>
<td>Radiography</td>
</tr>
<tr>
<td>DARHT-II</td>
<td>LANL (US)</td>
<td>2003</td>
<td>2</td>
<td>18.4</td>
<td>2000</td>
<td>Radiography</td>
</tr>
</tbody>
</table>

Classical Induction Linac Topology

- Array of Pulsers
- Array of Ferromagnetic Cores
- Cores with One Primary Turn
- Beam is as secondary circuit in 1:1 x-fmr
What is a typical accelerating gradient of induction linacs?

The machines were built in the period 1963-2003 (i.e. the 40 years progress)

Machines in other countries (France, Russia, China, etc.) have similar accelerating gradient

Acc. Gradient, kV/cm

1 MeV/m
May be a Problem with a Ferromagnetic Media?

- How good are these media? Ferrites was a significant concern.

Our study showed that Ni-Zn ferrites are not so bad:

~ 50 kV/cm, (i.e. 5 MeV/m) may hold off for a number of pulses ~ 10^8 if the pulse width is 30-100 nsec

However the acceleration gradient is 5-6 time less than gradient of rf-structures

"Кривая жизни" для ферритов 600Нн.

JINR preprint 9-12448, 1979
There are two natural ways →

- a reduction of the pulse width
- a reduction of the section length

We could expect to get an increasing of 5-10 times when the pulse duration is several nsec and thin section length are used.

Problem: high electric field in ferrite, a micro field enhancement in the non-uniform media (ferro-seeds), solid state ionization in ferromagnetic material, magnetic properties with ionization, local thermal shocks, etc.
Can the classical induction system deal with pulse widths in the nsec range?

There is the same $V^* \sec$ integral but the core does not react in the same manner:

$$\frac{dm}{dt} = \frac{\lambda}{M_s} \cdot H(t) \cdot [1 - m(t)^2]$$

$$m = \frac{M(t)}{M_s}$$

Slow rise/fall times but acc gradient is high

Fast rise/fall times but acc gradient is low

Physics of Fast Dynamic Magnetization

For more engineering aspects, see "Performances of Induction System for Nanosecond Mode Operation", SLAC-PUB-11853 (here the core area and the mean magnetic path length are bounded to transmit the nsec range power)
The induction system that has a large core ratio R_{out}/R_{in}, will not work effectively in nsec range. The stored energy goes to the core instead of to the beam.
A classical approach of a working principle for the induction system does not allow us to make a leap forward on the gradient improvement.

The transmission line approach helps to understand the role of components of individual cells (there is a contrasting view of the energy transfer from the source to the beam).

\[V_{\text{ind}} = \frac{d\Phi}{dt} \]

One Cell of Induction System

- Feeder
- Transmission line
- Gap
- Radial line with ferromagnetic and short end
- Shorted end strip line with ferromagnetic

Z3 >> Z1, Z2

Z3 << Z1, Z2

see the permeability role
What deductions can be made?

The highest gradient for a classical induction linac concept is ~ 1 MeV/m.

An electric field hold off in Ni-Zn ferrites is ~ 5 MV/m (reliably in the ten’s nsec range).

A reduction of the pulse width does not lead to the HG for a classical induction system.

The natural way to resolve the conflict is a coreless induction linac concept.
A Coreless Induction Concept

LIA-30 was one of the most powerful induction linac:

40MeV, 25 nsec, and up to 100 kA

(Pulse dose is 100 Gr at the distance 1m)

Acc gradient is 10 kV/cm

Used links: http://en.vniief.ru/
Sicond©: A Potential Cell Filler

Tungsten-Bronze Crystal in glass (Sicond)
Magnification: 10,000
The typical crystal sizes is ~ 100-200 nm
(almost Nanotechnology in the middle of 70’s !!!)
The crystals are surrounded by a good dielectric (glass)

The range of energy density of these capacitors is 27-60 kJ/cubic meter (up to 60 mJ/cm³ for the DC mode operation !)

See the English presentation of Sicond© dielectric and capacitors here:

High dielectric constant materials for pulsed energy storage capacitors
Our Results of Early R&D for a Solid State Coreless HG Induction Linac

In 1980’s it was proposed and studied:

• HG solid state induction linac concepts

• A coreless induction cell with solid state dielectrics and open IR ends (DWA)

• Solid state switch driven by the pulse photon flux in HG induction cell

• HG cell with a ferromagnetic switch

• A Solid State Switch based on DSRD Mode for HG Linac Concept (NLC-like, but without rf-system)
Results of Pioneering R&D for the Solid State Coreless HG Induction Linac (cont.)

10 nsec Sicond© stripline
(Slide-rule is for a scaling)

Solid State ON Switch driven by Pulse Photon Flux in HG Concept
The cell thickness is ~1.6 mm.

Cells with a tiny section length are a prototype for the SLIM©
Results of Early R&D for the Solid State Coreless HG Induction Linac (cont.)

Cell Impedance is ~ 2.5 Ohm
R_load ~ 3 Ohm
Nd:YAG 1064nm Laser, Wph=20 mJ, t_p=10 nsec

5 MeV/m was shown, see Proc. on Collective Methods of Acceleration, Dubna, 1982
What would be the major parameters for the induction concept based on 80’s results?

Parameters of p+ Driver

W=6 GeV, Ib=2kA, tp=3nsec, Rep Rate=60 PPS

Induction System & Silicon Switch

Vcell=10kV, Ccell=600pF, Ncell=600,000, Wind=36kJ

Gradient= 5MeV/m (if a charging supply is used in the DC mode)

Length=1.2 km, Vol_diel=0.9m³ (Mass ~ 2.5 T, i.e. 5,400lb), ~1.1M$

Asw=4 m² (~10 kg), jsw=30 kA/cm², dVsw/Vcell=0.1

Laser System (based on Nd:YAG pulsed laser)

Wph=150J (photon-to-carrier efficiency ~0.1),

wph=0.2J (typical parameter), N_ampl ~ 700

This system is expensive and it is not efficient
An Induction Cell with a Ferromagnetic Switch

See:

• Proc. on Collective Methods of Acceleration, Dubna, 1982
• SU patent #1263189, H 05h 9/00, filed January 1985

The rebirth of DW cell was in USA by B. Carder in 1997, patent # 5,757,146

see also G. Caporaso application US2007/0145916 filed Oct. 24, 2006
Ferromagnetic as a Switch

Analyze of Physical Limitations

• Switch needs a high current. More current will be produced by a higher voltage

• High electric fields may produce the ionization in ferromagnetic media. Plasma formation and breakdown are a killer of shock wave formation and a switch performance

• $E_{\text{ferrite}} \sim 10 \text{ kV/cm}$, (for long life time: $E \sim 5 \text{ kV/cm}$ is acting electric field) \rightarrow gives the rise/fall times $\sim 1 \text{ nsec}$

• A ferromagnetic switch is better than the switch based on a laser system. However the concept involves magnetic compression stages. The compression rate decreases vs. pulse width reduction (see JINR preprint P9-83-193, 1983)
An Induction Cell driven by the DSRD-principle

Pulse transformation in the radial line that is imposed in the inductor

see 11nd All Union Conference on Charged Particle Accelerators, Dubna, 1988
Plasma Opening Switch Mode as a Prototype Mode for the DSRD-Principle

The similar effects may take place in solid state semiconductors

Drift Step Recovery Device (DSRD)

A. Kardo-Sysoev et. all (in 80’s)

Performance of DSRD at Matched Load

\[A_{out} = 4.5 \times 600 = 2,700 \text{ V} \]

(LeCroy oscilloscope @ 10GS/sec)

Work was performed in the frame of ILC DR Kicker R&D

See presentation on ILCDR06 (Sept. 2006, Cornell University)
SLIM©: Feasible Topology for HG Coreless Induction Cell

Thin in z direction cell with a DSRD Mode Operation and the open IR ends
SLIM©: Feasible Topology for HG Solid State Coreless Cell

Low Voltage and High Current Pumping Circuit

HG Solid State Coreless Cell with a DSRD Mode Operation

A tiny cell with the open and short IR end
A Progress in the HG Vacuum-to-Media Interface Development (results from the LLNL team)

Pulsed surface breakdown electric field as a function of pulse width for single substrate, straight wall insulators
(Compliment to G. Caporaso et. al, **UCRL-JC-127274**)
SLIM©: Feasible Topology for HG Coreless Induction Module

The induction system is a storage energy element

The storage energy is practically delivered to the beam during interval of several nsec, i.e. the concept has high efficiency

The nsec mode operation may run with a high gradient that is comparable with the rf-linac gradient (~30 MeV/m@ 5 nsec FWHM)

DSRD solid state switches are controlled precisely (jitter ~30 psec) by the electrical trigger

High rep. rate (up to several MHz) is possible

The full size proposed SLIM© did not implement. The first Western DSRD samples will be available from VMI (Visalia, CA) in the beginning of 2008.
Some Important Features for the SLIM©

HG Mode Operation with High Rep. Rate (synchronization all DSRDs as one switch)

Possible Fast Control of the Spatial E(z,t) Distribution along Induction System

Acc. Structure with Q=1 (Broadband Impedance) and Alternating Gradient in the MHz range is feasible
Evaluation of the major parameters for p+ driver based on the SLIM© concept?

Parameters of p+ Driver

\[W = 6 \text{ GeV}, \ \text{I}_b = 2kA, \ \text{t}_p = 3\text{ nsec}, \ \text{Rep Rate} = 60 \text{ PPS} \]

Induction System & Silicon Switch (as it shown before)

\[\text{V}_{\text{cell}} = 10kV, \ \text{C}_{\text{cell}} = 600pF, \ \text{N}_{\text{cell}} = 600,000, \ \text{Wind} = 36kJ \]

Gradient = 20-30MeV/m is feasible

Length = 200-300m, \(\text{Vol}_{\text{diel}} = 0.9m^3 \) (Mass ~ 2.5 T, i.e. 5,400lb), \(\approx 1.1\text{M$} \)

\[\text{A}_{\text{sw}} = 4 \text{ m}^2 (\approx 10 \text{ kg}), \ \text{j}_{\text{sw}} = 30 \text{ kA/cm}^2, \ \text{dV}_{\text{sw}}/\text{V}_{\text{cell}} = 0.1 \]
Other Programs Based on Induction Linac Topology

Summary of applications for induction accelerators

<table>
<thead>
<tr>
<th>Application/Architecture</th>
<th>Voltage</th>
<th>Beam Current</th>
<th>Pulse length</th>
<th>Rep. rate</th>
<th>Issues/comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadron collider/p+ ind. synchrotron</td>
<td>31 TeV; 3 MeV/turn</td>
<td>25 A</td>
<td>500 ns</td>
<td>100 kHz CW</td>
<td>feasibility study going on; require upgrade of most existing detector components for higher L. competitor: low harmonic rf</td>
</tr>
<tr>
<td>RK Two Beam Acc for Linear Colliders/e- ind. linac</td>
<td>10 MeV, 0.3 MeV/m</td>
<td>1 kA</td>
<td>50 - 200 ns</td>
<td>180 Hz</td>
<td>fundamental aspect has been demonstrated; no current funding</td>
</tr>
<tr>
<td>Neutrino factory/μ-collider/μ-Ind. linac</td>
<td>200 MeV 2 MeV/m</td>
<td>100 ns</td>
<td>4 pulse @ 3 MHz; 15 Hz avg.</td>
<td></td>
<td>feasibility study going on; competition with low freq rf device; can survive rad. env.;</td>
</tr>
<tr>
<td>Heavy Ion Fusion/HI* ind. linac</td>
<td>4 GeV 1.5 MeV/m</td>
<td>0.2 - 10 kA</td>
<td>20 μs - 10 ns</td>
<td>~6 Hz</td>
<td>Significant program ongoing</td>
</tr>
</tbody>
</table>

Summary of applications for induction accel's-cont’d

<table>
<thead>
<tr>
<th>Application/Architecture</th>
<th>Voltage</th>
<th>Beam Current</th>
<th>Pulse length</th>
<th>Rep. rate</th>
<th>Issues/comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spallation n-source/p+ ind. linac</td>
<td>1 GeV</td>
<td>60 - 100 A</td>
<td>1600 - 160 ns</td>
<td>50 Hz</td>
<td>Will be easier to sell if induction technology more widespread</td>
</tr>
<tr>
<td>Radiography/e- ind. linac</td>
<td>18.4 MeV</td>
<td>2-4 kA</td>
<td>~50 ns</td>
<td>~2 MHz bursts of 4 pulses</td>
<td>DARHT-II built and undergoing testing, Ion-hose, beam-target interactions AHF to use protons/synch.</td>
</tr>
<tr>
<td>Sub-critical reactor/ind. FFAG; H-driver for spallation n-source; Accel. Trans. Waste (H-ind. FFAG)</td>
<td>~ 1 GeV 1-3 GeV</td>
<td>30 mA 10 mA (avg)</td>
<td>~few 100 ns</td>
<td>1 kHz CW</td>
<td>May combine rf + ind.(Ind barrier only); cost/MW beam power is low rel. to rf linac; early design, at idea stage</td>
</tr>
<tr>
<td>Driver for Microwave source FEL’s, BWO</td>
<td>~few MeV</td>
<td>~kA</td>
<td>~few 100 ns</td>
<td>~kHz</td>
<td>Very attractive match</td>
</tr>
</tbody>
</table>

i.e.
- fusion field,
- synchrotron with induction cell (superbunch, barrier bucket, Fixed-Field Alternating-Gradient)
- high-gradient accelerator (TBA-like)
- spallation neutron and neutrino factory projects
- induction-linac-driven free electron lasers, relativistic rf-sources
- etc.

The SLIM® can be well suited for these programs!
Conclusion

An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM©) is based on nanosecond mode operation. This mode may have an accelerating gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in proof of principle experiments.
I would like to thank

- DoE as a sponsor
- A. Kardo-Sysoev (Ioffe PTI of RAS)
- Ron Akre and Glenn Scheitrum (SLAC)
- Yuri Alexahin (FNAL)
- You for your attention