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Accelerate muons to 750 GeV with one 8 GV Linac

• Components:
Low energy cool muon source.
One 8 GV Linac. RF is not dispersed around the rings.
One Dogbone with 8 passes.
Two 1000m radius synchrotrons with rapid cycling magnets.
One 1000m radius synchrotron with interleaved dipoles

(Fixed superconducting dipoles and rapid cycling dipoles).

• For a sketch of acceleration with RF dispersed around rings
see: D. J. Summers et al., PAC07, axXiv:0707.0302
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8 GV
SCRF

4–60 GeV
Dogbone

Ring 1: 60–400 GeV µ+

Ring 2: 60–400 GeV µ-

Ring 3: 400–750 µ+/µ-



Superconducting RF Frequency: 805 MHz or 1300 MHz?

• Red Flag: 2 x 1012 µ extract 8% energy w/1300 MHz cavity.
Estimate longitudinal wakefields. Ref: V. Yakolev et al.
k(||) = [N(Γ(1/4)Z0c)/(π5/2a)]

√

g/σ = loss factor
N= 9 cells/cavity, a = 35mm, g= 115mm
Γ(1/4)= 3.63, Z0 = 377Ω, σ = bunch length= 10mm
k(||) = 5.1 V/pC/cavity, 2 x 1012µ = 320 nC
k(||) = 1.6 MV/cavity and a cavity is a meter long...
This can make the bunch length increase.

• What klystrons are available at 805 MHz? Ask S. Henderson.
SNS uses 750 kW, 8% duty cycle costing $170k each
13% more per MW than 10 MW, 1300 MHz ILC klystrons.
But SNS allows 8% duty factor and ILC only has 2%!

• Work out power needed to run an 8 GV Linac.
Consider 2 x 1012µ+ and 2 x 1012µ− in a 1000m radius ring.
320 750 kW klystrons will keep up. Cost: $54M for klystrons.

• Do 8 dogbone passes in the 805 MHz, 8GV Linac.
Get up to 60 GeV with very high muon survival.
Count on stored cavity energy for these 8 passes.
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60 to 400GeV, 260Hz Synchrotron

• 60 → 400 GeV in 43 orbits (0.9 ms)
8GV Superconducting RF (805MHz)
Muon Survival = 79% Radius= 1000m

• Duplicate the Fermilab Main Ring FODO Lattice

• 1.7m, 30T/m Quadrupoles, f = 260Hz

• 6.3m, 1.8T Dipoles (8/60.9m cell), f = 260Hz
Muon transverse emittance = 25 µm, γ(60GeV) = 570

h = 6σ = 6
√

25µm 99m/(6πβγ) = 4mm
Beam is small, but need OPTIM to get real magnet gaps.
6×30mm bore, N=4; I = B h/µ0N = 2200A

W =
∫

B2

2µ0

dτ = .5 LI2 = .5 CV 2, f =1/2π
√

LC; V = 2200V

.28mm grain oriented 3% Silicon steel laminations

Core Loss (B@1.6T)= 4.38×10−4f1.67B1.87 =11W/kg
550 Tons @ 13Hz Duty Cycle → 260kW/ring
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400 to 750GeV, 550Hz Hybrid Synchrotron

• 400 → 750 GeV in 44 orbits (0.92 ms) Radius = 1000m
8GV, 805MHz Superconducting RF; Muon Survival = 92%

• Approximate the Fermilab Main Ring FODO Lattice
• 3.2m, 30T/m Quadrupoles, f = 150Hz
• 4.2m, 8T Fixed Superconducting Dipoles
• 3.75/7.5/3.75m, -1.8 → +1.8T Dipoles, f = 550Hz

5mm×50mm×8.2m bore, N=2; I = B h/µ0N = 3600A

W =
∫

B2

2µ0

dτ = .5 LI2 = .5 CV 2, f = 1/2π
√

LC; V = 4700V

Core Loss (B@1.6T)= 4.38×10−4f1.67B1.87 =40W/kg
780 Tons @ 13Hz Duty Cycle → 1200kW/ring

Q ∓1.8T +8T ∓1.8T +8T ∓1.8T Q

F Dipole Dip. Dipole Dip. Dipole D

|←———————– 30.45m ———————–→|

• Dipoles oppose, then act in unison
• 1/40000 Path Length Difference during an acceleration cycle

Adjust radius; 1000 → 1000.025m
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Particle Paths in a 400 to 750 GeV Hybrid Half Cell

• Dipoles oppose at injection, then act in unison at extraction.
Edge focusing changes during the cycle. Can quads correct?
Try to simulate focusing with OPTIM.
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Grain Oriented 3% Silicon Steel EI Transformer Laminations

Table 1: Resistivity (ρ), coercivity (Hc), and permeability (µ) of steels.
Higher resistivity lowers eddy current losses. Low coercivity minimizes hys-
teresis losses. Grain oriented 3% silicon steel has a far higher permeability
parallel (‖) to than perpendicular (⊥) to its rolling direction and permits
minimal energy (B2/2µ) storage, as compared to low carbon steel at 1.8 T.

Steel ρ(nΩ-m) Hc(A/m) µ(1.0 T) µ(1.5 T) µ(1.8 T)

.0025% Carbon 100 80 4400µ0 1700µ0 240µ0

Oriented (‖) Si 470 8 40000µ0 30000µ0 3000µ0

Oriented (⊥) Si 470 4000µ0 1000µ0
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Synchrotron Oscillations per Orbit for 60 to 400GeV Ring

dτ/τ = (1/γ2
t − 1/γ2)(dp/p) = η(dp/p)

γt = 18, like the main ring. γ(60 GeV) = 570

h = 2π × 1000m × 805 MHz/c = 16800

νs =
√

− hη

2πβ2Es
eV cos φs

νs =
√

− 16800×1/182

2π(12)(60×109)
(8 GV)(−0.1) = 0.3

• Need 0.15 not 0.3 for longitudinal stability.
Consider doubling the transition gamma to 36.
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Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility
Alex Bogacz January 28, 2009

Main Ring Lattice at 30 GeV

1443.41689.526
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Prototype 550 Hz, 1.8T, 30 cm Long Dipole Magnet

• 3% grain oriented steel laminations
Vendor: T C Metal Slitting & Shearing, Los Angeles, CA
Cut laminations with Sodick AQ325L Wire EDM

• Stainless steel cooling tubes for water and thin copper wire.
Epoxy impregnate the coils.
Conductor in use at ISIS. Made by Trench Ltd.

• LC circuit. Polypropylene capacitor bank. IGBT switch.
Fluke 415B High Voltage Supply for topping off capacitors.
5mm×50mm×0.3m bore, N=10; I = B h/µ0N = 720A

W =
∫

B2

2µ0

dτ = .5 LI2 = .5 CV 2, f = 1/2π
√

LC; V = 860V

• F. W. Bell 4048 Hall Probe to measure 1.8T.
Good to 2% at up to 3000Hz.

• Have applied for QuarkNet funds to build in July 2009.
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Summary

• High injection γ due to low muon mass plus cool muons
→ small magnets ramping with a few thousand volts.
Power supplies are similar to those for neutrino horns.
Capacitors: $5/joule. Choke: $3/joule. Switch: $1000/MW
Many thanks to Dan Wolff and Ken Bourkland for advice.

• Ameliorate eddy current and hysteresis losses in magnets.
Thin grain oriented silicon steel laminations.
Stainless steel cooling tubes for water and thin copper wire.
For loss calculations see: D. J. Summers, physics/0108001
Conductor in use for new ISIS choke. Made by Trench Ltd.

• Exploit the 4% duty cycle.
25x lower losses than continuous operation.
96% of the time energy just sits in the capacitor banks.

• Muon survival is reasonable in a fast cycling synchrotron.

• Goal: 1.5 TeV collider with one 8GV, 805 MHz Linac.
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Fast Cycling Acceleration: R&D Plan

• Study ring lattices and apertures
• Smaller apertures: lower ramping voltages

• Build short prototype fast ramping dipole and 
power supply

• Build full length prototype fast ramping dipole 
and power supply
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