

Fermilab MTA 805 MHz RF Program

Dazhang Huang

Transforming Lives. Inventing the Future. www.iit.edu

MUTAC Review LBNL, April 2008

Collaborators

- IIT: Dazhang Huang, Yagmur Torun, Dan Kaplan
- Fermilab: Alan Bross, Al Moretti, Zubao Qian
- ANL: Jim Norem
- LBNL: Mike Zisman, Derun Li
- JLab: Bob Rimmer
- Imperial College, UK: Ajit Kurup (working on 805 cavity automation RF control system)

Outline

Introduction

- Goals & approaches

Button material test

- Motivation
- Experiment setup
- Procedures
- Measurements and data analysis

• E × B study

- Concept
- Experiment schematic
- Summary

Introduction

Cavity material test:

- Goal: find materials and coatings that can withstand high peak surface field in strong magnetic field
- Approach: use 805 MHz cavity to test buttons made of various materials
- E × B test:
 - Goal: study RF breakdown limit when accelerating field $E \perp$ magnetic field B
 - Will be extended to study arbitrary angles
 - Approach: rotate 805 MHz cavity 90° in solenoid field

Cavity material ("Button") test

April 9th, 2008

Button test: Experiment setup I

April 9th, 2008

Button test: Experiment setup II

- Vacuum, radiation levels, LHe level, solenoid current & voltage monitored
- Accelerating gradient measured with pickup probe inside cavity
- Data recorded in computer for later analysis

Button test: x-ray detectors

10 x-ray detectors in MTA hall

- 9 fast scintillation counters, counting rate limit: ~ 10 MHz
- 1 Nal-xtal energy measurement, counting rate limit: ~ 1 MHz _
- Detectors frequently used in button ۲ tests:
 - #8 (small scint. paddle)
 - #16 (Nal crystal)
 - RD46 "chipmunk" (measuring integrated _ x-ray radiation dose in 20 sec.)

April 9th, 2008

Button test: Procedures

Cavity conditioning procedure: •

- Raise RF amplitude slowly
- RF power automatically tripped by:
 - bad vacuum (>1e⁻⁸Torr)
 - high radiation level (>200mrem/hr)
 - modulator error
- On trip, reduce RF amplitude until stably below trip levels
- After 5–10 min, gradually increase RF amplitude
- Iterate to find maximal gradient without button surface damage
- We measured the maximal accelerating gradient at *B* fields up to 3.5 T in 0.25 T increments.

x-ray measurements:

- RF pulse length $\approx 20 \ \mu s$
- Use electronic gate covering RF pulse
- Record x-ray events for 1000 RF pulses

Button test: coating issue

- After 1st (Fermilab-coated) TiN_Cu button test, observed ≈80% of TiN coating lost
- LBNL then coated 2 new TiN_Cu buttons via 2 different techniques
 - LBNL coating gold, unlike Fermilab's (color determined by thickness)
- After test of LBNL TiN_Cu button #2, observed smooth surface w/ no coating loss

Button test results: 2007 & 2008

• TiN_Cu data:

- less stable than rest, maybe due to loss of TiN coating
- Mo data:
 - generally above W data
 - Mo appears to withstand higher surface field than W

2008 tests:

 more systematic conditioning to avoid coating damage

New LBNL coated TiN_Cu button:

- data appear more stable than FNAL-coated TiN_Cu
- better performance at high magnetic field

Where x-rays come from

- RF fields in the cavity may induce
 - multipactoring
 - field emission
 - sparking
- As a result:
 - electrons, ions, ..., stripped from cavity walls, hit surfaces inside cavity → x-rays

Button test: x-ray radiation I

LOG-LOG plot

All curves display power-law growth, ~*E*¹³, consistent w/ Fowler-Nordheim fieldemission law which can be **approximated** by:

 $I \sim E^n$,

where *I* is fieldemission current, *n* depends on work function and local field

Button test: x-ray radiation II

E × B study: Concept

- Stress on emitter $F \sim j \times B$
 - stress can be ~ 10 GPa, sufficient to trigger fracture
 - Data of Mo & W buttons consistent with this model
- In open-cell cavity (studied in ≈ 2000, lower-right), *E* generally not parallel to *B*, whereas in pillbox cavity, *E* // *B*
- In order to reveal the relationship between field emission and orientations of *E* and *B* field, $E \times B$ study is planned.

A Cross-section view of the RF Solenoid from the side

- Experimental studies of various button materials in 805-MHz cavity have been carried out at MTA.
 - Experiment setup and diagnostics worked well, ready for more extensive studies.
 - Coating loss on Fermilab-coated TiN_Cu button. LBNL-coated button #2 shows better behavior without visible loss
 - Mo seems to withstand higher accelerating field than W
 - More buttons to be tested: Another TiN_Cu coated by LBNL, electropolished Cu, unpolished Cu & Be
 - X-ray radiation follows Fowler-Nordheim law
 - 805 cavity automatic control program is planned to be tested
 - Improved uniformity of test procedures
 - Reproducibility improved

- Initial E \times B experiment setup using existing 805 MHz cavity is going to be done soon