Muons, Inc. Update

Rolland Johnson, Muons, Inc.

SBIR-STTR funding requires innovations

Necessarily "out of the box"
Options we investigate are projects
length and funds well defined
each project has research partner
mutual compatibility of projects/options not necessary

Muons, Inc. has a very rich program, too much for 25 minutes

http://www.muonsinc.com/ has links to papers

Muons, Inc. Muons, Inc. Project History

Year	Project E	Expected Funds	Research Partner	
2002	Company founded			
2002-5*	High Pressure RF Cav	ity \$600,000	IIT	
2003-7*	Helical Cooling Chann	nel \$850,000	JLab	
2004-5+	MANX demo experim	ent \$ 95,000	FNAL TD	
2004-7*	Phase Ionization Coo	ling \$745,000	JLab	
2004-7*	H2 Cryostat (HTS HS) \$795,000	FNAL TD	
2005-8	Reverse Emittance Ex	ch. \$850,000	JLab	
2005-8	Capture, ph. rotation	\$850,000	FNAL AD	
2006-9	G4BL Sim. Program	\$850,000	IIT	
2006-9	MANX 6D Cooling De	mo \$850,000	FNAL TD	
 2007-8	Stopping Muon Beam	s \$100,000	FNAL APC	
2007-8	HCC Magnets	\$100,000	FNAL TD	
2007-8	Compact, Tunable RF	<u>\$100,000</u>	FNAL AD (NP)	
		\$6,785,000		
t Not contin	ued to Phace II *Closed			

DOE SBIR/STTR funding: Solicitation September, Phase I proposal due November, Winners ~May, get \$100,000 for 9 months, Phase II proposal due April, Winners June, can get \$750,000 for 2 years

(see 11 PAC07 papers on progress, 21 in preparation for EPAC08)

Primary Goal: High-Energy High-Luminosity Muon Colliders

precision lepton machines at the energy frontier

- possible with new inventions and new technology
 - can take advantage of ILC advances
- achieved in physics-motivated stages
 - stopping muon beams
 - neutrino factory
 - Higgs factory
 - Z' factory (lower luminosity, perhaps LHC inspired)
 - Energy-frontier muon collider

Secondary Goal: Business opportunities for Stability

Rol -4/08/2008

Muons, Inc. SBIR-STTR Inventions/Developments

New Ioni	zation Cooling Techn	iques			
 Emitta 	ince exchange with con	tinuous absorber	for longitu	idinal cooli	ng
 Helica 	Cooling Channel		()	HCC)	
Mome	ntum-dependent Helica	Cooling Channel	-		
■ 6E	Precooling device, mu	on stopping beam	i (mu2e)		
■ 6	cooling demonstration	experiment		MANX)	
■ 6E	cooling segments betv	veen RF sections			
 Ioniza 	tion cooling using a par	ametric resonanc	e (F	PIC)	
Methods	to manipulate phase	space partitions	5		
Reverse	se emittance exchange	using absorbers	[)	REMEX)	
 High E 	nergy Bunch coalescing	(NF and MC can	share inje	ector)	
Technolo	gy for better cooling				
 Pressu 	irized RF cavities		()	HPRF)	
■ sir	nultaneous energy abso	orption and accele	eration and		
■ ph	ase rotation, bunching,	cooling to increas	se initial n	nuon captu	ire
■ hig	gher gradient in magnet	cic fields than in v	acuum ca	vities	
Helica	i Solenoid		(i	15)	
• Fign I	emperature Supercond	uctor			
	LC final stages				
Rol -4/08/200	8 \ \ \ \				

New inventions, new possibilities

Muon beams can be cooled to a few mm-mr (normalized)

- allows HF RF (implies <u>Muon machines and ILC synergy</u>)
- Muon recirculation in ILC cavities => high energy, lower cost
 - Each cavity used >10 times for both muon charges
 - Potential >20x efficiency wrt ILC approach offset by
 - Muon cooling
 - Recirculating arcs
 - Muon decay implications for detectors, magnets, and radiation
- A <u>low-emittance high-luminosity collider</u>
 - high luminosity with fewer muons
 - First LEMC goal: $E_{com} = 5 \text{ TeV}, \langle L \rangle = 10^{35}$
 - Another design goal is 1.5 TeV to complement the LHC

 Many new ideas in the last 6 years. A new ball game!
 (many new ideas have been developed with DOE SBIR funding) MUTAC LBNL

Another Scheme

- A six-dimensional (6D) ionization cooling channel based on helical magnets surrounding RF cavities filled with dense hydrogen gas is the basis for one plan to build muon colliders.
- This helical cooling channel (HCC) has solenoidal, helical dipole, and helical quadrupole magnetic fields, where emittance exchange is achieved by using a continuous homogeneous absorber.
- Momentum-dependent path length differences in the hydrogen energy absorber provide the required correlation between momentum and ionization loss to accomplish longitudinal cooling.
 - Recent studies of an 800 MHz RF cavity pressurized with hydrogen, as would be used in this application, show that the maximum gradient is not limited by a large external magnetic field, unlike vacuum cavities.
 - Crucial radiation tests of HP RF will be done at Fermilab this year.
- New cooling ideas, such as Parametric-resonance Ionization Cooling, Reverse Emittance Exchange, and high field solenoids, will be employed to further reduce transverse emittances to a few mm-mr to allow high luminosity with fewer muons.
- Present concepts for a 1.5 to 5 TeV center of mass collider with average luminosity greater than 10³⁴/s-cm² include ILC-like RF to accelerate positive and negative muons in a multi-pass RLA.
- a new precooling idea based on a HCC with z dependent fields is being developed for MANX, an exceptional 6D cooling experiment.

Rol -4/08/2008

Muons, Inc.

Muons, Inc. 700 m muon Production and Cooling (showing approximate lengths of sections)

- 8 GeV Proton storage ring, loaded by Linac
 - 2 T average implies radius=8000/30x20~14m
- Pi/mu Production Target, Capture, Precool sections
 - 100 m (with HP RF, maybe phase rotation)
- 6D HCC cooling, ending with 50 T magnets
 - 200 m (HP GH2 RF or LH2 HCC and SCRF)
- Parametric-resonance Ionization Cooling
 - 100 m
- Reverse Emittance Exchange (1st stage)
 - 100 m
- Acceleration to 2.5 GeV
 - 100 m at 25 MeV/c accelerating gradient
- Reverse Emittance Exchange (2nd stage)
 - 100 m
- Inject into Proton Driver Linac
- Total effect:
 - Initial 40,000 mm-mr reduced to 2 mm-mr in each transverse plane
 - Initial $\pm 25\% \Delta p/p$ reduced to 2%, then increased
 - exchange for transverse reduction and coalescing
 - about 1/3 of muons lost to decay during this 700 m cooling sequence
- Then recirculate to 23 GeV, inject into racetrack NF storage ring

Detailed theory in place, simulations underway.

Phase II grant

Phase II grant

Rol -4/08/2008

Muons, Inc. Neutrino Factory use of 8 GeV SC Linac

Beam cooling allows muons to be recirculated in the same linac that accelerated protons for their creation, Running the Linac CW can put a lot of cold muons into a small aperture neutrino factory storage ring.

Muons, Inc. Muon Collider use of 8 GeV SC Linac

Or a coalescing ring (also new for COOL07) can prepare more intense bunches for a muon collider

5 TeV ~ SSC energy reach ~5 X 2.5 km footprint

Affordable LC length (5 km), includes ILC people, ideas

More efficient use of RF: recirculation and both signs

High L from small emittance!

with fewer muons thanoriginally imagined:a) easier p driver, targetryb) less detector backgroundc) less site boundary radiation

This recirculating linac approach is much like CEBAF at Jlab. However a single linac with teardrop return arcs looks better and is a subject of a new SBIR proposal.

Muon Collider Emittances and Luminosities

• After:	ε _N tr	ε _N long.
– Precooling	20,000 µm	10,000 µm
– Basic HCC 6D	200 µm	100 µm
 Parametric-resonance IC 	25 μm	100 µm
– Reverse Emittance Exchange	2 μm	2 cm

At 2.5 TeV on 2.5 TeV

$$L_{peak} = \frac{N_1 n \,\Delta v}{\beta^* r_{\mu}} f_0 \gamma = 10^{35} \,/ \,cm^2 - s$$

20 Hz Operation:

 $Power = (26 \times 10^9)(6.6 \times 10^{13})(1.6 \times 10^{-19}) = 0.3MW$

100 μ m 100 μ m 100 μ m 2 cm $\gamma \approx 2.5 \times 10^4$ n = 10 $f_0 = 50 kHz$ $N_1 = 10^{11} \mu^ \Delta v = 0.06$ $\beta^* = 0.5 cm$ $\sigma_z = 3 mm$ $\Delta \gamma / \gamma = 3 \times 10^{-4}$ $\tau_\mu \approx 50 ms \Longrightarrow 2500 turns / \tau_\mu$

 $0.3\,\mu^{\pm}/p$

Rol -4/08/2008

MUTAC LBNL

 $\langle L \rangle \approx 4.3 \times 10^{34} / cm^2 - s$

Muons, Inc. Benefits of low emittance approach

Lower emittance allows lower muon current for a given luminosity.

This diminishes several problems:

- radiation levels due to the high energy neutrinos from muon beams circulating and decaying in the collider that interact in the earth near the site boundary;
- electrons from the same decays that cause background in the experimental detectors and heating of the cryogenic magnets;
- difficulty in creating a proton driver that can produce enough protons to create the muons;
- proton target heat deposition and radiation levels;
- heating of the ionization cooling energy absorber; and
- beam loading and wake field effects in the accelerating RF cavities.

Smaller emittance also:

- allows smaller, higher-frequency RF cavities with higher gradient for acceleration;
- makes beam transport easier; and
- allows stronger focusing at the interaction point since that is limited by the beam extension in the quadrupole magnets of the low beta insertion.

Muon Collider Design Options

Low emittance option

Very challenging option so far:

- need convincing ideas of how to incorporate RF into HCC
- need proof that HPRF will work under ionizing beam
- needs viable design for the next cooling stages PIC/REMEX
- needs collider lattice design with necessary parameters

High emittance option

a rather solid ground under the feet, but not without its risks and deficiencies:

- high muon bunch intensity 2.10¹²
- slow cooling resulting in poor muon transmission
- high p-driver bunch intensity

MCTF scenario

tries to alleviate the shortcoming of the high emittance option by borrowing some ideas from the low emittance option:

- faster 6D cooling by using HCC and/or FOFO snake
- bunch merging at high energy (20-30GeV)
- additional cooling using Fernow lattice or PIC (may become possible due to later bunch merging and lower total intensity)
- increased rep-rate to compensate for reduction in peak luminosity

MCTF Scenario - Y. Alexahin

FY08 MCTF Design & Simulations Plan

Collider ring:

- Optimization of the collider ring design
- Study of implications of the "dipole first" option for detector protection
- Beam-beam simulations
- > Detailing of the design with corrector circuits, injection and collimation systems

Basic 6D ionization cooling:

- Guggenheim" RFOFO channel:
 - More realistic modeling of the magnetic field
 - Alternative design with open cell RF cavities with solenoids in the irises
- Helical cooling channel

MCTF Scenario - Y. Alexahin

- Design of RF structure which can fit inside the "slinky" helical solenoid
- Design and simulation of the segmented channel
- FOFO snake:
 - tracking simulations and optimization
- Side-by-side comparison of the three structures to choosing the baseline scheme

Final cooling:

- Complete design of the 50T channel with required matching between the solenoids
- Channel design incorporating Fernow's lattice with zero magnetic field in RF
- Feasibility study of the PIC/REMEX scheme

RF power requirements for the Muon collider linac V. Yakovlev, N. Solyak 03/13/2008

Rol comment: Biggest difference between HEMC and LEMC is not emittance. LEMC bunch intensity ~1-2e11 (2e10 when E<23 GeV)

Feature of the high-emittance muon collider linac – high bunch population, 1-2e12.

ILC linac - 2e10.

Problems: Strong cavity loading by a single bunch; Energy spread in the bunch; Bunch timing; Transverse kick and emittance dilution. RF – kick.

Alternative technological paths to a LEMC are emerging

6-d Cooling – (first 6 orders of 6D cooling)

HCC with imbedded High-Pressure RF (original),
MANX HCC segments alternating with RF, and/or
Guggenheim Helix

Extreme Transverse Cooling – (2 orders)

- Parametric-resonance Ionization Cooling,
- Reverse Emittance Exchange REMEX,
- High-Temperature Superconductor for high B, and
- Designs using clever field suppression for RF

Updated Letter of Intent to Propose MANX, A 6D MUON BEAM COOLING EXPERIMENT

Robert Abrams¹, Mohammad Alsharo'a¹, Charles Ankenbrandt², Emanuela Barzi², Kevin Beard³, Alex Bogacz³, Daniel Broemmelsiek², Alan Bross², Yu-Chiu Chao³, Mary Anne Cummings¹, Yaroslav Derbenev³, Henry Frisch⁴, Stephen Geer², Ivan Gonin², Gail Hanson⁵, Martin Hu², Andreas Jansson^{2*}, Rolland Johnson^{1*}, Stephen Kahn¹, Daniel Kaplan⁶, Vladimir Kashikhin², Sergey Korenev¹, Moyses Kuchnir¹, Mike Lamm², Valeri Lebedev², David Neuffer², David Newsham¹, Milorad Popovic², Robert Rimmer³, Thomas Roberts¹, Richard Sah¹, Vladimir Shiltsev², Linda Spentzouris⁶, Alvin Tollestrup², Daniele Turrioni², Victor Yarba², Katsuya Yonehara², Cary Yoshikawa², Alexander Zlobin²

¹Muons, Inc.

²Fermi National Accelerator Laboratory
 ³Thomas Jefferson National Accelerator Facility
 ⁴University of Chicago
 ⁵University of California at Riverside
 ⁶Illinois Institute of Technology

- Contact, <u>rol@muonsine.com</u>, (757) 870-6943
- Contact, jansson@fnal.gov, (630) 840-2824
 Rol -4/08/2008
 MUTAC LBNL

6DMANX demonstration experiment Muon Collider And Neutrino Factory eXperiment

- Purpose: test theory and simulations
 - Helical Cooling Channel (HCC)
 - With continuous RF for best cooling
 - Also pion decay channel

Momentum-dependent HCC

- Stopping muon beams
- Precooler
- Dp/p control in HTS solenoid scheme
- Alternate to continuous RF
- MANX
- And demonstrate
 - Helical Solenoid technology
 - Longitudinal cooling
 - 6D cooling in continuous absorber
- Plan to have proposals ready this fall to FNAL and RAL

Phase II Proposals Due April 18

- HCC Magnets
 - Magnet Technology: HTS, HS
 - Incorporate RF, Improve simulations
- Stopping Muon Beams

 Improve mu2e with HCC and other new ideas
- Compact, tunable RF
 - New ideas for FFAGs, commercial uses:
 - Booster, MI, cancer therapy

Titles of 2008 Muons, Inc. DOE Proposals (grant decisions due by May 1, 2008)

- topic partner title
- HEP 49a JLab Pulsed RLA
- HEP 49a JLab Achromatic Low Beta Design
- 36a JLab Rugged Ceramic Window for RF NP
- JLab High Power SRF Coupler for 1.4 GHz BES 3b
- 45d Jlab User-Friendly Detector Simulations NN
- HEP 50a FNAL Pressurized RF Cavities for Muon Beam Cooling
- HEP 49a FNAL Novel Muon Collection Techniques
- 36a FNAL Metallic Deposition NP
- HEP 52a FNAL Multipixel-Photon Counters for HEP Experiments
- HEP 49a BNL Plasma Lenses for Pion Collection
- HEP 51b FSU HTS for High Magnetic Field Applications
- HEP 51b FSU HTS Quench Detection and Protection
- BES 3a UC Graphical User Interface for Radiation Simulations
- HEP 50a LBNL RF Breakdown studies using Pressurized Cavities MUTAC LBNL Rol -4/08/2008

Low Emittance Muon Collider Prospects: we are getting closer!

- A detailed plan for at least one complete cooling scheme with end-to-end simulations of a 1.5 TeV com MC,
- Advances in new technologies; e.g. an MTA beamline for HPRF tests, HTS for deep cooling, HCC magnet design
- And a really good 6D cooling demonstration experiment proposed to Fermilab and RAL
- LEMC Workshop April 21-25 at Fermilab! Rol -4/08/2008 MUTAC LBNL

Muons at Fermilab

An implementation plan with affordable, incremental, independently-fundable steps based on the SC PD Linac, each with HEP and Accelerator goals:

- 1. attractive 6D Cooling experiment (MANX!)
- 2. triple-duty SC PD Linac (p's, μ 's, ILC test) (HINS!)
- 3. intense stopping muon beams (mu2e!)

p accumulator/buncher, target, muon cooling

4. exceptional neutrino factory (23 GeV)

more cooling, recirculation, PDL upgrade, decay racetrack

5. Z' factory

more cooling, recirculation, lower luminosity required, use more existing infrastructure

6. Higgs factory (~300 GeV com)

more cooling, RLA, coalescing & collider rings, IR

7. energy frontier muon collider (5 TeV com) more RLA, deep ring, IRs

MUTAC07: Muons, Inc. projects

Low Emittance Muon Collider Workshop

Fermi National Accelerator Laboratory

April 21-25, 2008 Sponsored by Fermilab and Muons, Inc.

	34
Fermilab	8
Thomas Jefferson Lab	1
Brookhaven National Lab	2
Argonne National Lab	1
 Lawrence Berkeley National Lab 	1
 Illinois Institute of Technology 	2
Michigan State University	5
 University of California at Los Angeles 	2
 University of California at Riverside 	2
University of Mississippi	2
• KEK	1
Muons, Inc.	8
	31
Fermilab	18
Thomas Jefferson Lab	2
Illinois Institute of Technology	2
University of Michigan	1
 University of Tsukuba / Waseda University 	1
Osaka University	2
• KEK	1
Hbar Technologies, LLC	1
Muons, Inc.	2

34

It will be warmer!

New subtopics:

Linac parameters such as bunch intensities, power,...

High Power Project-X

Even more theoretical food for thought! Thanks Estia