

Report of Project Manager

Michael S. Zisman CENTER FOR BEAM PHYSICS

Neutrino Factory and Muon Collider Collaboration Project Manager

MUTAC Review-BNL April 18, 2007

- Introduction
- Challenges
- Ionization cooling
- R&D management process
- R&D overview
- Funding status
- FYO6 accounting
- Recent R&D accomplishments
- FY07 budget
- FY07 plans
- 5-year R&D plan (reminder)
- Summary and outlook

- U.S. Neutrino Factory and Muon Collider Collaboration (NFMCC) explores techniques for producing and accelerating intense muon beams
 - near-term focus: muon storage ring to serve as source of well characterized neutrinos ("Neutrino Factory") for long baseline experiments (~3000 km)
 - longer term focus: Muon Collider
 - Higgs Factory operating at few hundred GeV or energy-frontier collider operating at several TeV (interest in both increasing)
 - both machines difficult but have high scientific potential
 - either facility requires sustained R&D program
 - a feature common to modern projects (LHC, ILC,...)

- • Challenges of a muon-based facility (Neutrino Factory or Collider)
 - muons have short lifetime (2.2 μ s at rest)
 - puts premium on rapid beam manipulations
 - high-gradient NCRF (in magnetic field) for cooling
 - presently untested ionization cooling technique
 - fast acceleration system
 - muons are created as tertiary beam (p $\rightarrow \pi \rightarrow \mu$)
 - \circ low production rate \Rightarrow
 - target that can handle multi-MW beam
 - \circ large muon beam transverse phase space and energy spread \Rightarrow
 - ionization cooling
 - high-acceptance acceleration system and decay ring
- Cooling requirements for Muon Collider much more stringent than for Neutrino Factory

Ionization Cooling

- Ionization cooling analogous to familiar SR damping process in electron storage rings
 - energy loss (SR or dE/dx) reduces p_x , p_y , p_z
 - energy gain (RF cavities) restores only p_z
 - repeating this reduces $p_{x,y}/p_z$ and thus transverse emittance

- There is also a heating term
 - with SR it is quantum excitation
 - with ionization cooling it is multiple scattering
- Balance between heating and cooling gives equilibrium emittance

$$\frac{d\varepsilon_N}{ds} = -\frac{1}{\beta^2} \left| \frac{dE_\mu}{ds} \right| \frac{\varepsilon_N}{E_\mu} + \frac{\beta_\perp (0.014 \,\text{GeV})^2}{2\,\beta^3 E_\mu m_\mu X_0}$$

cooling

heating

$$\varepsilon_{x,N,equil.} = \frac{\beta_{\perp} (0.014 \,\text{GeV})^2}{2\beta m_{\mu} X_0 \left| \frac{dE_{\mu}}{ds} \right|}$$

— prefer low β_{\perp} (\Rightarrow strong focusing), large X₀ and *dE/ds* (\Rightarrow H₂ is best)

- Each year, R&D groups propose an annual program to the Technical Board, based on NFMCC budget guidance from DOE
- PM prepares budget based on this input
 - subsequently approved by Technical Board, Executive Board, and Co-Spokespersons
 - budgets determined by R&D program, not by "institutional commitments"
- After budget finalized, PM negotiates milestones with each institution based on the R&D plan
 - milestones specify dates and deliverables
 - a "report card" is generated at year's end to audit performance
- PM summarizes annual spending and accomplishments in a detailed report for MCOG and DOE at the end of each year
 - report also includes non-DOE information insofar as it is available

- NFMCC R&D program has the following components:
 - simulation and theory effort in support of Neutrino Factory and Muon Collider design
 - development of high-power target technology (Targetry)
 - hardware development of cooling channel components (MUCOOL)
- NFMCC also participates in four international endeavors:
 - MICE (ionization cooling demonstration)
 - MERIT (high-power Hg-jet target)
 - EMMA (demonstration of non-scaling FFAG system)
 - ISS (simulation studies of Neutrino Factory design)
- Hardware development continues as major focus of NFMCC activity
- Simulation effort aimed at reducing Neutrino Factory cost ("Study IIa") gave good results in APS neutrino study
 - increased performance, lower cost

8

- Since FY03, the NFMCC DOE budget has been nearly flat-flat
 - we remain hopeful of getting increased support from DOE and NSF

Year	DOE-base	DOE-NFMCC	TOTAL
	(\$M)	(\$M)	(\$M)
FY00	3.3	4.7	8.0
FY01	3.0	3.2	6.2
FY02	3.0	2.8	5.8
FY03	2.1	1.4	3.5
FY04	2.2	1.8 ^{a)}	4.0
FY05	1.9	1.7	3.6
FY06	1.8	2.1 ^{b)}	3.9
FY07	<mark>1.8</mark>	<mark>1.8</mark>	3.6
^{a)} Includes	s \$0.4M suppleme	intal funds	
^{D)} Includes	s \$0 3M suppleme	ental funds	

- We are presently committing funds to MICE and MERIT
 - and supporting the International Design Study (ISS \rightarrow IDS)
- By juggling projects across fiscal year boundaries and careful prioritization, we continue to make progress, but

 - only "contingency" on deliverables is time
 simulation effort weakened by lack of post-docs
 - BNL simulation effort has atrophied
 - MICE common fund contribution (£3K per Ph.D.) about to start
- Hardware development continues as major focus of FY07 activity
- Simulation effort aimed at reducing Neutrino Factory cost ("Study IIa") gave good results
 - ISS used this as its basis, upcoming IDS likely will also
 - EMMA design also builds on NFMCC concepts

- Simulations of Muon Collider scenario also progressing well
 - MCTF created at Fermilab
 - schemes compatible with NF "front end" being explored
 - solidifies the R&D connection between the two types of facility
 - Muon Collider design will benefit greatly from this new effort
 - NFMCC wants to participate fully
 - but we are stretched thin to do so
- Here I will cover:
 - FY06 accounting and R&D accomplishments
 - FY07 budget and status of current activities

- FY06 budget finalized by Spokespersons and PM in October, 2005
- Both MICE and MERIT are a significant draw on resources
 - substantial M&S funding now being used
- Missing element in our present program is MuCool coupling coil
 - needed to investigate degradation in achievable gradient with magnetic field (seen in 805 MHz cavity tests)
- We are continuing to pursue opportunities for obtaining a coupling coil
 - two options in the U.S. being pursued for FY07
 - MRI grant from NSF (U.-Miss., just submitted)
 - negotiations with ICST-Harbin

FY06 NFMCC budget (only DOE-NFMCC funds)[†]

Institution	COOLING	TARGETRY /MERIT	ACCEL./ COLLIDER	RESERVE	TOTAL (\$K)
BNL		405			405
FNAL	45				45
LBNL ^{a,b}	980			70	1050
ANL	150				150
IIT	85				85
Mississippi	20	25	20		65
Princeton		105			105
UCLA	25		45		70
UC-Riverside			20		20
ORNL		95			95
Jlab	5		5		10
TOTAL (\$K)	1310	630	90	70	<mark>2100</mark>

^CIncludes MICE funding of \$620K.

^bIncludes supplemental funding of \$300K for MUCOOL coupling coil.

†Also: salary support from BNL, FNAL, LBNL; support from NSF of \$1M (\$750K MRI + \$100K 3-yr grant); support of Muons, Inc. via SBIR grants

FY06 Accounting

- Supplemental request submitted to DOE in January 2006 (priority order)
 - priorities decided in discussions between Spokespersons and PM

Item	Request (\$K)
1) Coupling coil design and construction	975
2) Support for MICE design, commissioning,	
operations, and analysis	350
3) Support for International Scoping Study	100
TÖTAL	1025

- \$300K for item 1 obtained from this request
 - in the hope that an NSF MRI award would cover the rest
 - which unfortunately did not happen

- Main goals for FY06
 - complete fabrication of Targetry test magnet
 - continue with Hg-jet target fabrication
 - continue development of MUCOOL Test Area (MTA) at FNAL (cryogenics)
 - continue high-power tests of 805 MHz NCRF cavity
 - begin tests of 201-MHz NCRF cavity
 - continue 201-MHz SCRF development (NSF supported)
 - obtain funding for MICE (ongoing struggle!)
 - continue exploring and optimizing 6D cooling performance

FY06 Accounting

- Before funds were distributed, each institution provided milestones agreed upon by PM
 - milestones (example below) reflect budget allocations for each institution, including base program funds

ANL [Norem]		
Milestone	Date	Deliverable
Begin 805 MHz cavity testing at MTA	Feb-06	Inspection
Begin studies of small sample materials in the 805 MHz cavity	Mar-06	Inspection
Write up initial experimental results on pulse length dependence of breakdown	Jun-06	NFMCC note
Write up initial experimental results on coatings with Atom Probe Tomography	Aug-06	NFMCC note
Write up model of conditioning, pulse length and frequency dependence of breakdown	Sep-06	NFMCC note
BNL [H. Kirk]		
Milestone	Date	Deliverable
Test pulsed 15-T solenoid at MIT	Feb-06	NFMCC presentation
Complete fabrication of Hg-jet	Jun-06	Inspection
Begin integration test of Hg jet in pulsed solenoid	Sep-06	NFMCC presentation
Continue support for NFMCC web pages	Sep-06	Inspection
Test MERIT cryogenics cold valve box	Jul-06	Inspection
Simulation of FFAG ring for ISS	Aug-06	ISS report
ORNL [Gabriel]		
Milestone	Date	Deliverable
Award Hg loop fabrication contract	Feb-06	P.O. written
Begin testing Hg loop at ORNL	May-06	Inspection
Ship Hg loop to MIT	Jul-06	Inspection
Complete acquisition of tool box items	Jul-06	Inspection
Complete initial testing of integrated system at MIT	Sep-06	Inspection

• Summary of FY06 spending:

	Collaboration		Base Program	Overall	
Institution	Committed	Uncommitted	Committed	Total	Contact
	(\$K)	(\$K)	(\$K)	(\$K)	
ANL	150	0	50	200	J. Norem
BNL [1]	515	260	921	1436	H. Kirk
FNAL [2]	182	120	1683	1865	A. Bross
LBNL [3]	956	615	316	1271	M. Zisman
ORNL	135	50	85	220	T. Burgess
Princeton U.	105	0	200	305	K. McDonald
UCLA	70	0	57	127	D. Cline
UC-Riverside	16	0	0	16	G. Hanson
Mississippi	65	0	0	65	D. Summers
IIT [4]	87	9	0	87	D. Kaplan
Jlab	10	1.3	0	10	R. Rimmer
NSF MICE Support [5]	445	505	0	445	D. Kaplan
TOTALS [6]	2291	1055	3311	5603	
	2736	1559		6048	

NOTES:

[1] Uncommitted funds for MERIT experiment.

[2] Uncommitted funds for MTA cryogenics and beam line (\$120K).

[3] Includes \$119K in uncommitted Project Reserve funds maintained by LBNL

[4] Only DOE funds. NSF funding reported separately.

[5] Funds allocated to IIT as primary contractor.

[6] DOE totals in Roman type; additional NSF funding shown in italics.

- R&D progress was made on all fronts:
 - Targetry/MERIT
 - Cooling/MICE
 - Acceleration
 - Simulations/ISS

- Proposal for MERIT experiment approved at CERN in April 2005
- Concept for Hg jet system for CERN target test experiment developed in collaboration with ORNL

- Fabrication of 15 T magnet completed
 - tested successfully to full field at MIT
- Hg-jet system assembled at ORNL and tested with magnet at MIT

Hg jet system assembled at ORNL

system in test

location at MIT

- RF test plan prepared for both 805 MHz and 201 MHz
- 805-MHz program (now resumed) uses pillbox cavity with replaceable windows or "buttons"
 - cavity fits in bore of MTA (née Lab G) solenoid
 - will efficiently study materials and coatings (long overdue)

"Button" for materials tests

- Tested pressurized version of button cavity (Muons, Inc.)
 - use high pressure H_2 gas to limit breakdown

111111

BERKELEY

- Initial tests of 201 MHz cavity very successful
 - cavity quickly reached design gradient of 16 MV/m (no magnetic field)

- Curved Be windows for 201–MHz cavity fabricated and TiN coated in industry
 - two windows completed
 - just installed in cavity
 - will be tested this year

- Work on 201 MHz scrf cavity for the acceleration system has shifted gears
 - now trying to understand Q slope in terms of Nb coating properties
- Several 500-MHz cavities prepared to study fabrication techniques
 - hot isostatic pressed Nb-Cu; explosion bonded Nb-Cu
 - spinning of bonded cavity preferred

- Simulations
 - main focus in past year was to complete ISS
 - considerable progress made over past few years in simplifying front-end systems while maintaining performance
 - developed RF bunching and phase rotation scheme; simplified cooling channel; FFAG scheme for final acceleration stages
 - NFMCC front end scheme adopted as ISS baseline
 - we also played key role in definition of acceleration scheme...not so simplified

- Summary of main findings from ISS (report in preparation)
 - preferred proton driver energy is 10 \pm 5 GeV
 - Hg-jet target gives optimal muon production for protons in preferred energy range
 - Study IIa front end design is preferred, using simultaneous operation with both muon signs
 - non-scaling FFAG beam dynamics limits performance, so preferred approach will use only one, or at most two, such systems
 - racetrack and triangular rings possible (2 rings needed either case)
 - triangle more efficient if 2 suitable sites operating simultaneously
 - racetrack better for single detector site + no directional constraints
- Continue with IDS for next few years
 - launch formally at NuFact07 (Okayama)

- Prepared initial budget for FY07 based on guidance of flat budget
 - Tech Board discussed and approved it
- Budgetary "goal" is to maintain university programs while making some progress on key fabrication activities
- Choices based on the following R&D obligations
 - start on RFCC modules for MICE
 - provide remaining components for MERIT experiment
- Continue seeking funds for MuCool coupling coil
 - for RF cavity tests at MTA
 - NSF, DOE, China
- Finally successful at getting NSF funding for UC-Riverside
 - \$133K per year for 3 years plus matching contribution from Hanson's UC-R startup funds

• FY07 NFMCC budget (only DOE-NFMCC funds)[†]

Institution	COOLING /MICE	TARGETRY /MERIT	ACCEL./ COLLIDER	RESERVE	TOTAL (\$K)
BNL		440			440
FNAL	50				50
LBNL ^a	680			35	715
ANL	150				150
IIT	85				85
Mississippi	42		18		60
Princeton		45			45
UCLA	25		45		70
UC-Riverside			95		95
ORNL		80			80
Jlab	5		5		10
TOTAL (\$K)	1037	565	163	35	1800

^aIncludes MICE funding of \$500K.

[†]Also: salary support from BNL, FNAL, LBNL; support from NSF of \$0.1M + \$0.75M MRI grant; support of Muons, Inc. via SBIR grants

· Also submitted MRI request for coupling coil to NSF

- Targetry
 - complete MERIT experiment and prepare to publish results
- Cooling/MICE
 - continue testing of 805 MHz and 201 MHz high-gradient cavities
 - continue MICE experiment, work toward publishing initial results
- Acceleration
 - optimize system design for performance and cost
 - participate in EMMA test program (effort only)
- Simulations
 - participate in Neutrino Factory International Design Study (followon to ISS)
 - continue collider studies with aim of completing feasibility study
 - collaborate on MCTF test program

- Continued low funding and launching of MICE and MERIT pose challenges for the NFMCC
 - prepared 5-year R&D plan two years ago to indicate funding needs
 - baseline plan assumed "flat-flat" funding
 - incremental plan assumed \$0.4M increase (no luck yet)
- Strawman budgets developed for both funding scenarios
 - activities lumped into four broad categories
 - Cooling: MUCOOL component R&D
 - Targetry: development of high power targets and collection systems, including beam tests at BNL, CERN, or elsewhere
 - System Studies: work on acceleration, ring coolers, colliders, performance studies
 - MICE: purchase or fabrication of MICE components

NOTE: common fund contribution was not considered when plan originally formulated

• Summary of baseline (flat-flat) case is

Activity	FY05	FY06	FY07	FY08	FY09	FY10
Cooling	492	345	345	705	615	225
Targetry	<mark>713</mark>	<mark>640</mark>	<mark>625</mark>	<mark>100</mark>	100	<mark>100</mark>
System Studies	195	195	195	295	295	195
MICE	300	620	635	700	790	1280
TOTAL	1700	1800	1800	1800	1800	1800

- comments:
 - assumes base program funds remain as in FY06: BNL (\$0.9M); Fermilab (\$0.6M); LBNL (\$0.3M)

- getting harder to accommodate this each year

- priorities in FY06-07 are MERIT experiment and MICE solenoids
- split between Cooling and MICE somewhat flexible

• Budget details for baseline case

	FY06	FY07	FY08	FY09	FY10	Sum
	(\$K)	(\$K)	(\$K)	(\$K)	(\$K)	(\$K)
Available	965	980	1405	1405	1505	6260
Cooling	<mark>345</mark>	<mark>345</mark>	705	<mark>615</mark>	225	<mark>2235</mark>
staff	280	180	180	180	180	1000
absorber	20	20				40
MTA ops.	45	45	45	45	45	225
CC-MUCOOL		100	480	390		970
MICE	620	635	700	790	1280	4025

• MICE needs only \$3.4M for half-cell test \Rightarrow "extra" funds available

- for contingency, if needed; for subsequent full-cell test, if not
- Full-cell test needs 1 more year, depending on contingency experience and getting additional help from NSF (late cf. MICE schedule)
 - ability to reduce costs by partnerships continues to be explored
 - coupling coils with ICST-Harbin
 - RF cavities with UK groups

- Past year productive but difficult for the NFMCC
 - MERIT hardware completed and shipped
 - 201 MHz NCRF cavity easily reached "no-field" design goal
 - ISS completed, IDS being launched
 - MICE component fabrication launched (spectrometer solenoids and tracker)
 - progress toward self-consistent design of Muon Collider
 - Muons, Inc. initial gas-filled cavity tests encouraging
- Presented our program to HEPAP AARD Subpanel in February 2006
 - got recognition that we were under-funded (but no relief yet)
- Strong MUTAC endorsement of our R&D accomplishments and plans will be needed to maintain or enhance our budget
 - NFMCC will continue to hold up its end of the bargain!