

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

MUCOOL RF Program

Derun Li

Center for Beam Physics Lawrence Berkeley National Laboratory

MUTAC Review at BNL April 18, 2007

ERNEST URLANDO LAWRENCE Berkeley National Laboratory

Collaborators

M. Dickson, R. MacGill, J. Staples, S. Virostek, M. Zisman Lawrence Berkeley National Laboratory A. Bross, A. Moretti, B. Norris, Z. Qian Fermi National Accelerator Laboratory J. Norem **Argonne National Laboratory R.** Rimmer **Jefferson National Laboratory** Y. Torun, D. Huang Illinois Institute of Technology **D. Summers** University of Mississippi W. Lau, S. Yang **Oxford University, UK**

A Real Cooling Channel

LH₂ absorbers

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATOR

Single particle measurements: 10% cooling of ~ 200 MeV/c muons requires ~ 20 MV of RF Measurement precision can be as good as $\Delta(\epsilon_{out}/\epsilon_{in}) = 10^{-3}$

201-MHz RF cavities

MICE Cooling Channel Courtesy of S. Q. Yang, Oxford Univ.

MICE: International muon ionization cooling demonstration experiment hosted by RAL, UK

Primary Goals

- Development of normal conducting 201-MHz cavity that can operate at a gradient of ~ 16 MV/m in a few Tesla magnetic fields environment
 - Exploring engineering solutions (challenges)
 - ✓ Cavity design (physics)
 - ✓ Engineering design
 - ✓ Cavity body
 - ✓ Ports

CCCCC

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

- \checkmark Couplers and RF windows
- ✓ Be windows
- ✓ Fabrication
- \checkmark RF conditioning and operation without and with *B* fields
- Preliminary studies
 - Experimental studies at 805-MHz with the Lab-G magnet
 - The 201-MHz cavity reached 16 MV/m without and with "magnetic fields"
 - Operating a cavity at 16 MV/m with strong *B* could be very challenging, but to be confirmed experimentally

CCCCCC

- We believe that the behavior of RF breakdown in general can be described (predicted) by
- Tensile strength of the material(s) used in the cavity fabrication (T) -
- Local surface field enhancements (β_{eq})

 $E_{eurf} = \leq \sqrt{(2T/\epsilon_0)/\beta_{eq}}$

- This should apply to all accelerating structures
- In SC structures local heating becomes problem first
- **Follows universal curve** _

The 805-MHz and 201-MHz cavities installed at MTA, FNAL to study RF breakdown with external magnetic fields.

- What have we found so far
 - Achievable RF gradient is limited by external magnetic field,
 - Recent data confirms that conditioning with B fields is difficult.
- How does magnetic field affect RF cavities?
 - Physics of RF breakdown with magnetic fields
 - What materials and material properties are desirable?
 - What surface modification is possible?
- **Button tests**

CCCCC

BT ORLANDO LAWRENCE

- Cavity re-configuration with buttons
- **Different button materials and** coatings

RF R&D with Button Tests

- Looking for materials and coatings that can withstand high peak surface fields in strong magnetic fields
- Button tests at MTA, FNAL
 - ✓ Button holder for quick replacement of buttons
 - ✓ Special window and flange
 - ✓ Button is being installed for high power tests
 - Cu, Ti-N Cu, electro-polished Cu, Be, SS, Cr and W/Mo
- Ready for high power tests

• The cavity design parameters

- Frequency: 201.25 MHz
- β = 0.87

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

- Shunt impedance (VT²/P): ~ 22
 MΩ/m
- Quality factor (Q_0): ~ 53,500
- Be window radius and thickness:
 21-cm and 0.38-mm
- Nominal parameters for cooling channels in a muon collider or a neutrino factory
 - ~ 16 MV/m peak accelerating field
 - Peak input RF power ~ 4.6 MW per cavity (85% of Q₀, 3τ filling time)
 - Average power dissipation per cavity ~ 8.4 kW
 - Average power dissipation per Be window ~ 100 watts

The 201-MHz cavity at MTA

High Power Tests

First RF conditioning started in late Feb. 2006 with

- Flat copper windows (plates) with Ti-N coatings
- RF diagnostics: field, power & radiation measurements
- Good vacuum ~ high 10⁻⁹ Torr

One year ago: without external magnetic field, the cavity was conditioned very quietly and quickly & reached ~ 16 MV/m

RF conditioning and tests continue.

We can reach 18 MV/m with and without magnetic fields.

We seem to see unexpected effects that will affect MICE performance.

RF Pulse for conditioning

0.1 ms/division (400 ~ 800 μs at 10-Hz rep. rate)

Distribution of PMT detectors

- The cavity reached design gradient of 16 MV/m with almost no hard breakdown events, possible factors for the success:
 - Careful handling of the cavity
 - Good and clean surface finish
 - EP and high pressure water rinsing
 - Ti-N coatings of the windows
- High power tests with strong magnetic field are needed.
 - A coupling coil magnet
- Two curved Be windows are installed recently
 - Positive pressure with N₂ gas during the installation
 - Portable clean room, the environment is class 100
 - Inspection of the cavity surface
 - Clean and shining surface without any sign of damage
 - Be windows were baked in vacuum oven before installation
 - Two curved Be windows oriented pointing to the same direction
 - No differential pressure on Be windows

rrrrr

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Numerical Studies

- Modeling the experiment setup for both 805⁻
 MHz and 201-MHz cavity to understand
 - RF conditioning with magnetic field
 - Multipactoring
 - RF breakdown

- More results are coming soon

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATO

- In collaboration with a UK group

- We now have a model of rf breakdown which explains copper systems.
 - 70 pages in Phys. Rev. & NIM
- The model is being extended to high pressures and magnetic fields.

SCRF Development

- SCRF development started with Cornell studies of a SC 201 MHz cavity and are continuing.
- Studies of SCRF materials are starting at ANL.
- ANL/MSD is developing nanofabricated SCRF composites (A. Gurevich), that:
 - Eliminate known SCRF limits,
 - Based on Atomic Layer Deposition,
 - Reduce fabrication costs,

EST ORLANDO LAWRENCE

Increase thermal efficiency.

Future Plans

- Microwave measurements to find or confirm
 - Cavity frequency stability with large Be windows
 - RF coupling

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

- RF probe calibration
- High power tests
 - Gradient tests with Be window and B=0
 - Repeat B field measurements
 - Move cavity closer to magnet need more field
- Button tests with 805-MHz cavity
 - Study materials, coatings and geometry
 - Repeat gradient tests with and without *B* fields