



## Muon Collaboration

# 5-Year R&D Plan

#### Michael S. Zisman CENTER FOR BEAM PHYSICS

Muon Collaboration Project Manager

MUTAC Review-LBNL April 26, 2005





- Introduction
- R&D goals
- R&D plans
- Assumptions
- Budget scenarios
- Summary





- Continued low funding, and launching of MICE and CERN Targetry experiment, pose challenges for the MC
  - MCOG asked us (Geer, Palmer, MZ) to prepare a 5-year R&D plan and indicate the corresponding funding needs
    - realistic plan should assume "flat-flat" funding
    - optimistic plan could perhaps double our "directly funded" program
- MCOG wants evidence that we have a plan and that we have (roughly) the wherewithal to follow it
  - plans presented here are "cautiously optimistic"
    - we continue living close to the edge
- Request is quite timely in view of plans being put in place to have HEPAP subpanel review of DOE's advanced accelerator R&D program
  - MUTAC conclusions today will undoubtedly influence what happens later





- MC studying issues associated with producing, cooling, accelerating, and storing intense beams of muons
  - key technical challenges of muon beams
    - very short lifetime (2.2 μs at rest)
    - produced as tertiary beam
      - low intensity
      - very large 6D emittance (energy spread, transverse sizes and angles)
  - key non-technical challenge
    - limited availability of funds to carry out R&D in timely way





- To make a Neutrino Factory a worthwhile option for HEP community, we must address these technical challenges
  - short lifetime puts premium on very rapid beam manipulations
    - requires development of high-gradient NCRF cavities operating in a magnetic field
    - reducing muon beam phase space requires presently untested ionization cooling technique
    - requires fast acceleration having large longitudinal and transverse acceptance
  - low muon production rate requires target that can withstand bombardment by multi-MW proton beam





- Primary MC R&D thrusts:
  - cooling, including
    - ionization cooling demonstration (MICE, approved at RAL)
      - we participate as part of an international collaboration
    - component R&D (high-gradient cavities operating in magnetic field, LH<sub>2</sub> absorber development)
  - target development, including
    - demonstration of realistic target system under pseudo-operational conditions (Targetry experiment, approved at CERN)
      - McDonald and Kirk co-spokespersons for international effort
    - materials R&D (identify suitably rad-hard materials for targets; study non-standard target implementations, e.g., Hg jet)
      - work of interest to other areas, e.g., LARP/LHC, Superbeams, SNS





- system studies, including
  - feasibility and cost studies of end-to-end facility configurations (e.g., World Design Study sponsored by RAL)
  - studies of non-standard acceleration systems (FFAG development)
  - involvement in community activities (e.g., NuFact workshops, NuFact Summer Schools, APS Neutrino Study)
- implicit in all this effort is training of new accelerator physicists
  - partnership with particle physicists at universities has been effective
    - accelerator physics "missionary work" 🙂





- Overarching R&D goal:
  - provide sufficient information to permit U.S. HEP community to assess whether to include a Neutrino Factory in its long-range construction plans
    - time frame: next 5-10 years
  - develop Neutrino Factory concept to the point where a laboratory can consider adopting it as a future construction project
- Highest priority items are those critical to reaching this goal
  - completion of international MICE experiment at RAL
  - development of suitable cooling channel components
  - completion of international **Targetry experiment** at CERN
  - high level of participation in Neutrino Factory World Design Study
- R&D plan presented here reflects these priorities





- Draft plan is being debuted here
  - hopefully, MUTAC will endorse our vision and recommend MCOG approve the plan
  - after MCOG approval, plan will be given to DOE
    - and likely the HEPAP subpanel will see it as well
- Cooling
  - participate in the MICE experiment at the agreed-upon level (\$5-6M hardware costs, plus some operating funds)
    - provide 2 spectrometer solenoids, 1 RFCC module, a Cherenkov detector, a portion of tracker detector, absorber windows
      - hope for additional NSF support for part of this work (MRI submitted, as is University Consortium proposal)
  - continue cavity R&D program at MTA (both 805 and 201 MHz)
    - most critical need is for coupling coil for 201 MHz tests





- Targetry
  - carry out CERN Targetry experiment (FY07-FY08); thereafter, reduce activity in favor of cooling program
    - H. Kirk managing technical work for the MC
- System studies
  - focus on World Design Study
    - "scoping" part of WDS being organized now by RAL/BENE
    - goal is to launch at NuFact05 and complete by NuFact06
    - second phase: detailed engineering/costing of chosen option
      - request EU "Framework 7" funds for this activity (2007-2008)
  - participation in FFAG electron model initiative also desirable
  - BNL group will carry the main load here (Berg, Fernow, Gallardo, Kahn, Kirk, Palmer)



### Assumptions



- MUCOOL R&D will require modest support except for the provision of a coupling coil
  - other pieces all exist now
- MICE hardware is costly and requires the bulk of MC funds after completing Targetry experiment
  - NSF has been asked for support for MICE and has provided a small amount (\$100K/yr for 3 years)
    - we requested additional \$2M via MRI, for one spectrometer solenoid and the U.S. portion of tracker detector
      - presently out for review
    - to be conservative, only partial MRI funding (\$0.5M) from NSF was assumed, even in the baseline budget scenario
  - operating funds must include "common fund" contribution (author tax)
    - not clear how to get DOE portion funded in early years





- System studies will involve mostly effort and will be accommodated in "base program" funds
  - NSF support has been requested to augment this effort along with support for cooling and for MICE activities

|          | University | / Consortium Funding | Needs from NSF |  |
|----------|------------|----------------------|----------------|--|
| Activity |            | Funding              | Institution(s) |  |

| ACTIVITY                   | runaing | Institution(s)          |
|----------------------------|---------|-------------------------|
| ·                          | (\$K) ¯ |                         |
| Absorbers                  | 116     | UIUC, NIU, IIT          |
| Instrumentation            | 66      | NIU, NWU                |
| Acceleration               | 40      | MSÚ                     |
| Cooling/Emittance exchange | 200     | UIUC, MSU, U-Miss, UC-R |
| MICE                       | 128     | U-Miss, UC-R            |
| TOTAL (annual)             | 550     |                         |

 in a minimum budget scenario, much of this effort would need to be deferred should NSF fail to support it

 $\Rightarrow$  other MICE groups will then be exploiting what we conceived, designed, and built  $\bigotimes$ 





#### • Time line for University Consortium activities, if funded by NSF

|                                        | 2006 |         | 200 | 7   |        | 2008 |      |      | 200      | 9 |    |    | 2010 |      |     |
|----------------------------------------|------|---------|-----|-----|--------|------|------|------|----------|---|----|----|------|------|-----|
| ID Task Name                           |      | 12 Q3 Q |     |     | Q3 Q4  |      | Q2   | Q3 ( |          |   | Q3 | Q4 |      | Q2 Q | 3 C |
| 1 LH2 Absorber R&D                     |      |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
| <sup>2</sup> Muon Beam Instrumentation |      |         | -   |     |        |      |      |      |          |   |    |    |      |      |     |
| 3 MICE                                 | _    |         | -   |     |        |      |      |      |          |   |    |    |      |      |     |
| 4 Cherenkov                            |      |         |     |     |        | •    |      |      |          |   |    |    |      |      |     |
| 5 Tracker                              | _    |         | -   |     |        |      |      |      | <b>-</b> |   |    |    |      |      |     |
| 6 Simulation                           |      |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
| 7 Fabrication                          |      |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
| 8 Analysis                             |      |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
| 9 FFAG Simulations                     |      |         |     |     |        |      |      | 7    |          |   |    |    |      |      |     |
| 10 WDS Simulations                     |      |         | -   |     |        | -    |      |      |          |   |    |    | _    |      |     |
| 11 6D Cooling                          | -    |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
| 12 Simulation                          |      |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
| 13 Experiment Design                   |      |         |     |     |        |      |      |      |          |   |    |    | _    |      |     |
|                                        |      |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
|                                        |      |         |     |     |        |      |      |      |          |   |    |    |      |      |     |
|                                        |      |         |     | Pos | t-docs | + 5  | tude | ents |          |   |    |    |      |      |     |





- Cost of items needed for MICE/MUCOOL
  - "ingredients" for the budget scenarios presented here
  - all costs without contingency; contingent events will require schedule stretch-out

| Item                      | No. (5)          | No. (6)          | Cost (1)         | Cost (2+)        | Total ( <mark>5</mark> ) | Total ( <mark>6</mark> ) |
|---------------------------|------------------|------------------|------------------|------------------|--------------------------|--------------------------|
|                           |                  | _                | (\$K)            | (\$K)            | (\$K)                    | (\$K)                    |
| CC-MUCOOL                 | <mark>n/a</mark> | <mark>n/a</mark> | <mark>970</mark> | <mark>n/a</mark> | <mark>970</mark>         | <mark>n/a</mark>         |
| Spectr. sol.<br>RF module | 2                | 1                | 1200<br>1400     | 800<br>900       | 2000<br>1400             | 900                      |
| CC-MICE<br>Tracker        | 1<br>1           | 1                | n/a<br>625       | 560              | 560<br>625               | 560                      |
| TOTAL                     | -                |                  |                  |                  | 5555                     | 1460                     |

NOTE: Step 5 tests one half-cell of cooling channel; Step 6 tests one full cell





- Two strawman plans considered for hardware costs
  - "baseline" (flat-flat, \$3.6M/yr) and "incremental" (\$4M/yr)
  - base program funds: BNL (\$1.0M); FNAL (\$0.6M); LBNL (\$0.3M)
    - "threat" to BNL base program adds uncertainty to plan
  - then, MC funds of \$1.7M available each year in baseline case
- Summary of baseline case is

| <u>Activity</u> | FY05             | FY06             | FY07             | FY08             | FY09             | FY10             |
|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Cooling         | 492              | 245              | 345              | 705              | 615              | 225              |
| Targetry        | <mark>713</mark> | <mark>640</mark> | <mark>625</mark> | <mark>100</mark> | <mark>100</mark> | <mark>100</mark> |
| System Studies  | 195              | 195              | 195              | 295              | 295              | 195              |
| MICE            | 300              | 620              | <u>535</u>       | 600              | 690              | 1180             |
| TOTAL           | 1700             | 1700             | 1700             | 1700             | 1700             | 1700             |

- amounts for Targetry and System Studies are assigned first
- remaining funds available for MUCOOL + MICE





- priorities in FY05-07 are CERN Targetry experiment and first MICE spectrometer solenoid
- specific allocation of MICE funding depends on fate of NSF MRI proposal
- require help in obtaining 1 CC and tracker hardware from elsewhere (iMICE and/or NSF)





### • Hardware requirements (Step 5) differ in the two scenarios

| Funding source     | Baseline            | Incremental         |
|--------------------|---------------------|---------------------|
| MUCOOL -           | <u>(\$K)</u><br>970 | <u>(\$K)</u><br>970 |
| MICE-US            | <mark>3400</mark>   | <mark>4410</mark>   |
| MICE-international | 560                 | _                   |
| NSF                | 625                 | 175                 |
| TOTAL-DOE          | 4370                | 5380                |
| TOTAL              | 5555                | 5555                |

— to reach Step 6 in either scenario requires an additional RFCC module ( $\Rightarrow$ +\$1460K)

- cannot reach Step 6 by FY10; need two more years (baseline) or one more year (incremental)
- Note that both plans require some financial help from others
  - intentionally pessimistic assumptions made to show that there is still a solution; we hope to do better
- Either plan would benefit from front-loaded (cf. flat) funding profile (not considered yet, for simplicity)





#### • Budget details for baseline case

|           | FY06<br>(\$K)    | FY07<br>(\$K)    | FY08<br>(\$K) | FY09<br>(\$K)    | FY10<br>(\$K) | Sum<br>(\$K)      |
|-----------|------------------|------------------|---------------|------------------|---------------|-------------------|
| Available | 865              | 880              | 1305          | 1305             | 1405          | 5760              |
| Cooling   | <mark>245</mark> | <mark>345</mark> | 705           | <mark>615</mark> | 225           | <mark>2135</mark> |
| staff     | 180              | 180              | 180           | 180              | 180           | 900               |
| absorber  | 20               | 20               |               |                  |               | 40                |
| MTA ops.  | 45               | 45               | 45            | 45               | 45            | 225               |
| CC-MUCOOL |                  | 100              | 480           | 390              |               | 970               |
| MICE      | 620              | 535              | 600           | 690              | 1180          | 3625              |

• MICE needs only \$3.4M for Step 5, so extra funds are available

-for contingency, if needed; for Step 6, if not

• With our pessimistic scenario, Step 6 requires about 2 more years, depending on contingency experience



## **Budget Scenarios**



 Baseline plan gives first spectrometer solenoid, end of FY07 second spectrometer solenoid, end of FY08 1 coupling coil and first RF cavity, end of FY09 3 RF cavities, end of FY10

| ID | Task Name                | 2 | 006 | 2007 |   | 2008 | 2009 | 2010 |
|----|--------------------------|---|-----|------|---|------|------|------|
| 1  | Staff                    |   |     |      | _ |      |      |      |
| 2  | Absorber                 |   |     |      |   |      |      |      |
| 3  | Tracker                  |   |     |      |   |      |      |      |
| 4  | MTA Operations           |   |     |      |   |      |      |      |
| 5  | Spectrometer Solenoid #1 |   |     |      |   |      |      |      |
| 6  | Spectrometer Solenoid #2 |   |     |      |   |      |      |      |
| 7  | Coupling Coil #1         |   |     |      |   |      |      |      |
| 8  | RF Cavity (1 each)       |   |     |      |   |      |      |      |
| 9  | RF Cavities (3 each)     |   |     |      |   |      |      |      |

#### • Issues

- long hiatus for RF cavity fabrication
- delay between first and second spectrometer solenoids
- Associated with "cash-flow problem" due to Targetry support in FY06– 07





- In incremental scenario, assume DOE MC funds of \$2.1M/yr available
  - amounts for Targetry and System Studies again assigned first
  - remaining funds available for MUCOOL + MICE
- Summary of incremental case is

| <u>Activity</u> | FY05             | FY06             | FY07             | FY08             | FY09       | FY10             |
|-----------------|------------------|------------------|------------------|------------------|------------|------------------|
| Cooling         | 492              | 260              | 590              | 970              | 320        | 320              |
| Targetry        | <mark>713</mark> | <mark>640</mark> | <mark>715</mark> | <mark>190</mark> | <b>100</b> | <mark>100</mark> |
| System Studies  | 195              | 195              | 195              | 195              | 195        | 195              |
| MICE            | 300              | 1005             | 600              | 745              | 1485       | 1485             |
| TOTAL           | 1700             | 2100             | 2100             | 2100             | 2100       | 2100             |

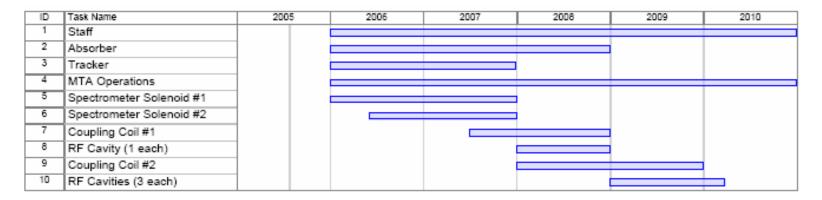
- base program funds remain as now: BNL (\$1.0M); Fermilab (\$0.6M); LBNL (\$0.3M)
- assumes DOE pays for all required U.S. components except for small NSF contribution to tracker (i.e., no MRI funding)
  - even with this very pessimistic assumption, hardware requirements can be met with \$400K/yr incremental funds





#### • Budget details for incremental case

|           | FY06             | FY07             | FY08             | FY09             | FY10             | Sum               |
|-----------|------------------|------------------|------------------|------------------|------------------|-------------------|
|           | (\$K)            | (\$K)            | (\$K)            | (\$K)            | (\$K)            | (\$K)             |
| Available | 1265             | 1190             | 1715             | 1805             | 1805             | 7780              |
| Cooling   | <mark>260</mark> | <mark>590</mark> | <mark>970</mark> | <mark>320</mark> | <mark>320</mark> | <mark>2460</mark> |
| staff     | 180              | 180              | 180              | 180              | 180              | 900               |
| absorber  | 20               | 20               | 20               |                  |                  | 60                |
| MTA ops.  | 60               | 50               | 50               | 50               | 50               | 260               |
| CC-MUCOOL |                  | 340              | 630              |                  |                  | 970               |
| Post-doc  |                  |                  | 90               | 90               | 90               | 270               |
| MICE      | 1005             | 600              | 745              | 1485             | 1485             | 5320              |


- MICE needs \$4.4M for Step 5, so additional funds are available
  - -for contingency, if needed; for Step 6, if not
  - -Step 6 requires about 1 more year



### **Budget Scenarios**



 Incremental plan gives both spectrometer solenoids, end of FY07 first coupling coil and first RF cavity, end of FY08 second coupling coil, end of FY09 3 RF cavities, early in FY10



- Issues
  - first RF cavity still comes somewhat late
  - first coupling coil still comes somewhat late





- We have presented two funding scenarios for carrying out the MC R&D program in the next 5 years
  - baseline, flat funding at \$3.6M total, \$1.7M MC-direct funds
  - incremental, flat funding at \$4.0M total, \$2.1M MC-direct funds
  - both cases are well below the funding level recommended for our program of \$8M/yr
- For both scenarios we developed a budget consistent with achieving our programmatic goals
  - conservative assumptions made about additional funding sources
    - with luck, we'll do better than estimated here
  - contingent events, especially in the baseline case, would result in modest delays to the program (1-2 years)
- MC R&D program is ambitious, but can be accomplished with steady funding support and careful prioritization of the effort











- NSF proposal made very conservative assumptions about costing
  - resulted in a fairly high cost estimate
- We have now revisited all estimates, with more realistic assumptions
  - magnets and RF assumed to be vendor fabrication, not done at Lab
    - reduces both ED&I costs and overhead
  - 7:1 multiplexing confirmed to be acceptable via simulations
  - experience gained from fabrication of prototype RF cavity
    - considerable ED&I now done, but "off the books" as R&D
  - development of less expensive implementation of Be windows
  - elimination of contingency (not a real savings; increases risk of schedule delays)





• Comparison of costs

| (\$K)              |
|--------------------|
| ) 2300             |
| 1120               |
| $\frac{625}{4045}$ |
|                    |

- new estimates do not require 20% miscellaneous "correction"
- new estimates include required ED&I and overhead explicitly
- ED&I reduced based on simpler fabrication model and engineering effort accomplished since original estimates prepared
- corrections in proposal for ED&I, overhead, contingency effectively doubled estimated cost used for proposal ( $\Rightarrow$  \$18M)
- correction for new estimate (contingency) only ≈\$1M, as other items accounted for properly
- "exploitation costs" from NSF proposal (post-docs, students, travel) not included