Electron Model of Linear-Field FFAG for Muon Acceleration

- The Study 2 FFAGs for muon acceleration are NOT MURAstyle scaling FFAGs.
- They are a new breed of accelerator, using linear elements, with characteristics well matched to the rapid acceleration of beams with large 6D emittance.
- They rely on novel and, as yet, untested beam-physics
- They have been the subject of intensive study and simulation over the last 4 years at the FFAG workshops.
- It is important to build a proof of principle model, and plans for that are the subject of this talk.

The purpose of the electron model is to demonstrate and investigate the novel features of a nonscaling FFAG at a small fraction of the cost of the multi-GeV muon machine.

MUTAC Presentation, 25 April 2005, Shane Koscielniak, Triumf, Vancouver, BC, Canada.

Electron Model What does it look like?

 like the KEK ATF (36 F0D0 arc cells) but without its straight sections, and scaled down from 1.5 GeV to 20 MeV

Electron Model - novel accelerator physics

Momentum Compaction

The lattice will demonstrate the compaction of v. large range of momenta into remarkably narrow apertures. Under Livingood's definition $\alpha = (dp/p)/(dL/L)$, $\alpha \rightarrow \infty$ at mid-energy for this machine.

The FFAG operates at fixed magnetic field with a range of central momenta spanning $\pm 50\%$ in $\delta p/p$. This has two consequences.

Gutter Acceleration

The particle beam moves across the radial aperture, during acceleration, leading to changes in orbit shape which produce a quasi-parabolic time-of-flight variation. With fixed radio-frequency, this necessitates *asynchronous* acceleration within a rotation manifold outside the rf bucket.

Resonance Crossing

- Machine has natural negative chromaticity, but central momenta span \pm 50% in δ p/p.
- This leads to crossing of many integer and ½-integer betatron resonances this has not been done before.
- The new FFAG pins operation on the hope that if crossing is fast enough, no damage is done.
- October 2004: Based on tracking studies, Machida reported tolerances for alignment and quad strength rms errors of 0.05mm and 0.1% - these are feasible to achieve
- This successful demonstration of resonance crossing was a key milestone to proceeding with the design work.
- But verification on a real machine is important for confidence and credibility.
- The PoP model will determine what level of random driving terms may be tolerated.

Electron Model - Specifications

- IO MeV injection, 20 MeV extraction
- •42 identical cells. High periodicity produces self-cancellation of terms driving 1/3-integer structure resonances.
- Doublet lattice combined function D and quad F (lowest cost)
- Cell length 0.42 m. No insertions (long straight sections)
- Split betatron tunes $v_h > v_v$ to reduce path-length variation
- Magnets peak field at pole tip less than 0.2T
- Injection/Extraction scenario feasible (15cm)×(0.1T)
- 20 of 1.3 GHz buncher-type cavities in alternate cells
- Voltage 40-120 kV each (18 to 6 turns)
- MA cavity or induction core for slow resonance crossing study

Lattice functions and example orbits versus momentum

News from 3-7 April 2005 FFAG workshop at FNAL

- Until now, lattice models have used sector bends.
- Trbojevic points out that R-bends benefit from edge focusing, leading to an increase of vertical tune for high-momenta.

Insignificant effect on path-length variation

45 cell triplet lattice, 34 cm cell, 3 GHz RF.

Electron models will be revised because of benefit to v_y . High-angle edge effects noticeable for rings with few cells, but will have v. little impact on 80-100 cell muon rings.

Radiofrequency system

Where possible adopt designs already existing at the host laboratory.

Adopt 1.3 GHz ELBE buncher cavity to be $R=1M\Omega$,used at Daresbury 4GLS $Q=1.4\times10^4$

1.3 GHz preferred over 3 GHz: reducing RF while magnet length is fixed, implies magnets become a smaller number of RF wavelengths. This implies smaller phase slip and more turns.

Frequency variation of few 10⁻⁴ to investigate 1 or 2 fixed points operation.

Adopt TESLA-style linear RF distribution scheme to reduce number of waveguides

20 cm straight for installation

Quadrupole Magnet

Hardware – general principle – copying or modifying existing hardware is to be preferred over developing new designs.

General requirements: •Gradient: 7 T/m •Slot length: 6 cm •Aperture: 40 mm wide, 25 mm high •Rep rate <1Hz

The 5cm long upgrade Fermilab linac quadrupole has peak pole-tip field near 3.5 kG, and the bore is 5cm. With a BPM installed the aperture is 3.7cm. This is ideal for the 3 cm orbit swing envisioned for the ring. Reverse bending is effected by offsetting of quad.

Combined function magnet

Specifications

Permanent dipole component of 0.15 T

- Slot length: 10 cm
- Magnetic length: 7cm
- Permanent quad component of ~4T/m (steel shaping)
- Quad trim coil provides +/- 20%
- Magnet spacing: 5 cm
- Aperture (good field): 50 mm wide, 25 mm high
- Field uniformity ± 1% at pole tip
- Space for internal BPM
- IHz operation or less
 - No cooling
 - No eddy current problems

Challenges

- Aspect ratio (gap to length)
- Squeeze so much into such a short slot
- End field

Dipole only field lines

Dipole plus quad field lines

Magnet Concept (Vladimir Kashikhin, FNAL)

Power the dipole component with permanent magnets

- Compact
- No power issues
- Thermally stable PM material

Power the quadrupole component with a (modified) Panofsky coil
Compatible with rectangular aperture
Relatively short ends

Electron Model – who will host?

Daresbury Laboratory U.K. is very enthusiastic to host the electron model downstream of their 8-35 MeV Energy Recovery Linac Prototype (ERLP) of the 4the Generation Light Source (4GLS).

Funding Sources?

M£2.5 funding was applied for under the Basic Technology Program of the Engineering and Physical Sciences Research Council on 11th February.

The program supports basic, high quality technology research. Principal investigators: Leeds University (School of Physics and Astronomy) & CCLRC ASTeC

Funding adequate for a small ring with no RF cavities; use energy-variability of linac to characterize dynamics.

Funding - Continued

M€2 applied for under the New and Emerging Science Technology (NEST) fund of the 6th Framework Program of the European Union. Adventure projects criteria:

(i) outside Thematic Priorities of FP6

(ii) high novelty, ambitious, and has high-risk/high-impact character Projects implemented through Specific Targeted Research Projects.

- There is a 2-Stage proposal.
- •Outline submission 13th April 2005
- Invitation for full proposal mid-July 2005
- Signing of contracts April 2006
- Duration of project 2 years

Principal investigator: Council for the Central Laboratory of the Research Councils (CCLRC), Accelerator Science and Technology Centre (ASTeC).

Potential Collaborators: BNL, CCLRC, CEA Saclay, CERN, FNAL, TRIUMF; universities of Grenoble, Kyoto, Lancaster, Leeds, Liverpool, Rostock (Germany), Uppsala (Sweden).