Apply helical cooling channel for extra cooling stage

K. Yonehara

NFMCC'09 meeting 01/27/09

Conventional extra cooling channel

Design concept of using helical cooling channel (HCC) for extra cooling

- From past MANX (HCC w/o RF structure in the magnet) studies, we observed longitudinal phase space heating as we have seen in the conventional pure solenoid channel
- However, we noticed the heating rate is quite smaller than that in the conventional pure solenoid channel
- In general, very high field strength (40~60 Tesla) is required for the final cooling stage
- High field strength in MANX will be applied relatively easy comparing with a standard homogenous HCC
- Here, I attempted to use MANX for final (or extra) cooling channel

Cooling simulation for normal HCC

Still mismatching between two HCC segments exists:

- Wrong betatron harmonics generates transverse mismatching
- Wrong beta-synchrotron harmonics generates longitudinal mismatching

Find the least common multiple number

Extra cooling in MANX channel

- Eliminate RF structure in HCC
- HCC field must be degraded as a function of the beam path length
- Apply high field solenoid to make extra cooling
 - → Assume 60 Tesla is available
- Varying HCC field configuration to achieve lowest transverse emittance
- Just observed the equilibrium emittance in this time

ToF in HCC and pure solenoid

- In a pure solenoid channel, a ToF of slow (fast) particle takes more (less) time to reach the other end of channel
- This picture is opposite in HCC (opposite phase slip factor)
- Phase slip factor can be tuned by adjusting the dispersion
- → Even isochronous condition can be realized in HCC
- ToF wrt momentum is directly correlated with path length
- ToF is used to optimize the HCC field

$$\frac{\delta s}{s} = \frac{\delta v}{v} + \frac{\delta t}{t}$$

$$\delta v=0$$
 in no RF, no abs

HCC (kappa = I)

6

Challenge to use low kappa HCC for final cooling

- HCC can reduce the longitudinal heating effect which has be issued in pure solenoid
- Low kappa HCC design would be easy to put the energy loss compensation RF
- Putting wedge absorber in low kappa HCC will be effective for emittance exchange (not studied yet)

Find optimum field configuration in low kappa HCC

Proper condition can be seen from kappa = 0.4

Study Balbekov HCC

HCC simulation with wedge absorbers

V.Balbekov, 10/09/08

WA allows to reduce reference momentum

Normalized parameters

$$X_0 = \kappa = 0.62$$

Wedge

$$= 0.57$$

For simulation

Period length 1 m

Reference radius 10 cm

Reference momentum 159 MeV/c

Solenoid field 5.23 T

Dipole field at centre -1.02 T

Accelerating gradient 29.4 MV/m

Reference energy loss 14.7 MV/m

Field expressions in Balbekov HCC design

$$b_{\psi}=2b_{d}I_{1}(\kappa)+b_{q}I_{2}(2\kappa)+\dots$$
 omit higher order expression
$$k\frac{\partial b_{\psi}}{\partial \kappa}=b_{\psi}'=2b_{d}I_{1}'(\kappa)+b_{q}I_{2}'(2\kappa)+\dots$$

Use 1st order of Taylor expansion in Balbekov HCC design

$$b_{\psi} = 2b_d I_1(\kappa)$$

$$b'_{\psi} = b_d \left(-\frac{4\pi I_1(\kappa)}{\kappa^2 \lambda} + \frac{2\pi (I_0(\kappa) + I_2(\kappa))}{\kappa \lambda} \right)$$

$$p=0.159~{
m GeV/c}$$
 $\lambda=1.0~{
m m}$
 $a=0.1~{
m m}$
 $\kappa=rac{2\pi a}{\lambda}=0.628$

Balbekov field parameters

Derbenev & Johnson field parameters

$$b_{\psi} = 0.673 \text{ T} \xrightarrow{\text{mismatching}} b_{\psi} = -0.863 \text{ T}$$
 $b'_{\psi} = -1.04 \text{ T/m} \xrightarrow{\text{mismatching}} b'_{\psi} = -3.77 \text{ T/m}$
 $b_{s} = 5.23 \text{ T} \xrightarrow{\text{mismatching}} b_{s} = 4.74 \text{ T}$

• I concluded that Balbekov HCC design concept is completely different from Slava & Rol's HCC model Reference: NFMCC-doc-146,147,185,187,193,284

Summary

- Studied extra cooling MANX channel
- Lowest transverse emittance is 240 μm rad @ 50 Tesla and 190 μm rad @ 60 Tesla in transverse planes
 - **–** 800 μm rad (RF frequency=1600 MHz) in longitudinal plane (not shown in this presentation)
- Challenge to use low kappa HCC for final cooling stage
- Looked at Balbekov HCC model and realized that it is based on different design concept from Slava & Rol's HCC