IDS: Overview/Goals

J. Scott Berg Brookhaven National Laboratory NFMCC Collaboration Meeting 27 January 2009

IDS Goals

- Specify/compute physics performance of neutrino factory
- Define accelerator and detector systems
- Ocompute cost and schedule
- Identify necessary R&D items

IDS Products

Interim design report (c. 2010)

- Engineering designs for accelerator and detector systems
- Cost and schedule estimates
- Work plan to deliver reference design report
 - Report production itself
 - Outstanding R&D required

IDS Products

Reference design report (c. 2012)
 Basis for a "request for resources" to get serious about building a neutrino factory

IDS Working Groups

- Physics and performance evaluation
 Detector
- Accelerator

IDS Baseline

- Define a set of parameters and outline design to start with
- Keeps everyone working on the same page
- Significant inertia to make major changes
 - Especially when these changes cross working groups
- Based on the ISS results

IDS Baseline Parameters Physics Related

25 GeV muon beams in two storage rings
Two baselines: 3000–5000 km, 7000–8000 km
5 × 10²⁰ muon decays per year per baseline
Muon beam divergence of 0.1/γ
Detector: 50 kton magnetized iron or 10 kton magnetized emulsion cloud

IDS Baseline Parameters Accelerator Related

- OProton driver
 - □5–15 GeV
 - □ 50 Hz pulse repetition rate
 - 3 proton bunches per pulse
 - □1–3 ns bunch length
 - □4 MW proton beam power
- Liquid mercury jet target

IDS Baseline Parameters Accelerator Related

 \circ Front end

Tapered solenoid channel & decay channel
 Neuffer buncher/phase rotation
 Modest amount of LiH RFOFO cooling

• Acceleration

Linac to 0.9 GeV
 Two RLAs to 3.6 and 12.6 GeV
 Linear non-scaling FFAG to 25 GeV

IDS Baseline Parameters Accelerator Related

Storage ring

- Two racetracks
- Allow both signs simultaneously
- Holds three sets of bunch trains
- 100 ns spacing between bunch trains

IDS Baseline Accelerator

Workplans

- Each working group has a work plan
- Divide up work, assign responsibilities
- Physics and performance working group
 - Evaluate performance
 - Comparison to alternatives
 - Making the physics case to the community
 - Making connections to theory
 - Answering specific list of questions

Workplans

Accelerator working group

Each subsystem above has two coordinators
We have a detailed work plan
Subsystem coordinators work out details

Workplans

- Accelerator working group, specific issues
 - Target bunch train structure
 Gradient limitations on RF in front end
 Do FFAGs really offer advantages over
 - RLAs?
 - Tracking through entire system
- Will hear about subsystems NFMCC is contributing to
 - Target covered earlier

Acknowledgments

- This is the work of a large group
- Special recognition to Ken Long who has been doing a good job holding all this together
- OMore info at https://www.ids-nf.org/

