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Outline

We have immediate problems:
MICE needs working, high gradient cavities with little field emission.
NFMCC needs increased gradients.

- New experimental results this year.

- OOPICX Pro modeling
New threshold for breakdown, and many predictions of experimental properties.

- Other modeling
- ALD for SRF (and NCRF)
- "Breakdown-Proof" cavities a program to get there

- To Do:



The Neutrino Factory and Muon Collider (NFMCC) Program
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Muon cooling needs high gradients at low frequencies - in B fields.
MICE needs to cure Dark Current / Breakdown Problems.

RF Expts started in 2000 - we look mostly at FE dark currents and X rays.
Many papers, new models and methods of analysis.
This work has high priority, many collaborators.

Like CLIC and ILC, we need better NCRF and SRF, our B fields complicate things.
Atomic Layer Deposition (ALD) should control all rf surfaces.



Our experimental program does not cover all the ground.
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- Modeling is required to fill the gaps and understand the data,
and show what we need.



RF breakdown: x ray pulses from the pillbox

File  Edt Vertical Horizddcq Trig  Display Cursors  Measwre  Math  Utiities  Help File  Edit

Vettical  HorizAcq  Trig  Display  Cursors  Measuwe  Math  Utiities  Help
Tek  FastAcy  Sample 9 May 08 10:59:19 Fasthcy  Sample

Level

AT 226.0mY

i
]

A .

File  Edit Vetical Horiz/dcqg  Trig  Display Cuisors  Measwe  Math  Uliities  Help File  Edit

Vettical  HorizAcq  Trig  Display  Cursors  Measure  Math  Utiities  Help
Tek  FastAcq

Tek  FastAcq

2+
" P

80 ns / div

File  Edit Vetical Horiz/dcqg Trig  Display Cuisors  Measwe  Math  Uliities  Help

Fle Edt Vetical Hoiz/Acq Iig Display Cuisors  Measwe Math  Utiiies  Help
[Tek  Fastécq

40 ns / div | A

92.0mY

"'W‘-nw.

TN

I S




What is happening?

- X ray data show how energy leaves the cavity. Relativistic electrons can take most.
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At the MTA our 805 MHz pillbox has:
- Stored Energy ~1J

- Electron energy ~ 4 MeV
- Electron current ~ 4 A, (40,000 (?!) times the field emitted currents)



The big picture

- The maximum field is a result of complex interactions., some uncontrollable.
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- Intervening in these processes are difficult.

- Field emission - same problem, different effects.



What starts the arc, and how does it develop?

Ionization

/e
Fracture .

Average fields in these cavities can be 30 - 50 MV/m = Eq¢

X rays show small asperities have much larger fields, Ejocat ~ 7 GV/m.

We assume an enhancement factor = Eoca / Esurs

At 7 GV/m tensile stress is comparable to copper's tensile strength.



We can describe the breakdown arc more precisely.

They seem to look like this:
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We measured the initial conditions with x rays.

* FN can be approximated by I = £

 The local surface field = f( n, ¢ ).~7 GV/m
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OOPIC Pro shows how the arc develops

- We use a simple geometry | e

Copper Gas

Pointed-asperity

The geometry The model

Surface
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OOPIC Pro generates an enormous volume of data.




A movie shows how what happens in the first few ns.
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FE electrons are not the only source of ionization.

- These arcs are high beta, inhomogeneous, non - equilibrium, cold, weakly ionized,
non-neutral, collisional, inertially confined plasmas with two weakly interacting
electron populations

- Electrons trapped in the potential well of the ions circulate around at energies that
are sufficient fo create more ionization - and the sheath potential increases the
gradient to draw electrons out of the emitter at phases other than Eqex.
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- The net result is that field emitted currents are: 1) enhanced and, 2) extend over a
larger range of rf phase.



The code also gives plasma properties and thermal loadings.
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We can also measure a threshold for breakdown.

- Dazhang's data gives a breakdown threshold pressure of ~ 30 Torr Cu gas. @76v/m)
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This gives the number of neutral atoms required for BD.

Depth of gas ~ 3 um.

Radius of gas cloud ~ 3 mm.

pressure ~ 30 Torr
=> minimum amount of neutral gas ~ 10° atoms,

~ a reasonable fraction of an atomic monolayer.

(Copper holds on to one monolayer of oxide at high fields.)



OOPIC Pro also generates optical radiation produced in BD.

- Dazhang's data
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The optical radiation can be checked with experiment
- Moses Chung is developing optical instrumentation at Fermilab

- Jan Kovermann has been working with optical signals at CERN.

Diagnostics applied to RF and DC
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The code describes only the first 6 ns at present. Mods required.

This limits the predictions that can be made and tested.

The plasma is still weak after 6 ns. It gets ~ 1000 times stronger

All the usual instrumentation looks at the X-rays or photons around Py.

It is possible to extrapolate some parameters, however.



We can compare measured and predicted rise times.

We can look at rise times of the shorting current pulse.
- The initial few ns have been modeled in detail in OOPIC Pro.
- The end of the breakdown event was measured with x rays.
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The big question: Why did the open cell cavity work so well?

The arc seems to confined by the B field, making hotter spots.

The plasma particles however, are evidently not confined very well.

The trajectory of the shorting current is partially driven by ExB forces

Plasma pressure seems much greater than field energy.

High current beams emitted near E=0 will return to the arc region - asymmetrically
deflected by ExB drifts
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Magnetic field orientation has not been systematically studied.

* Magnetic fields will:
Perturb electron orbits to change the trigger mechanism,
Change the temperature and sheath potential of the plasma,
Make the discharge sensitive to the orientation of the solid surface,
Cause the plasma to drift perpendicular to the fields.

* It would be desirable to have a simple geometry, i.e. a pillbox..

Cavity used to test
E x B effects with 30
custom bends. 30°
0°30°60° or 0° r° 2n°

O




We can do this with a series of new cavities.

- The cavities should be similar, and cheap.



We also have some useful results from Molecular Dynamics (MD)
- Z. Insepov has extended his modeling of tensile failure of asperities.

- With magnetic fields, but no currents, the fragments come off spinning.

- He is doing other things:

Ion sputtering Coulomb Explosions
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We just submitted a large proposal to look at ALD for SRF.

People:
Argonne, M. Pellin, J. Norem
IIT, J. Zasadzinski
JLab, R. Rimmer
Fermilab, L. Cooley
Northwestern, D. N. Seidman
U of Chicago, S. Sibener
NHMFL, A. Gurevich

Goals:
What are the fundamental SRF performance limits?
What are the optimum coating regimes for ALD materials?
How far can ALD multilayers increase the maximum rf gradient?
What is the optimum multilayer geometry?
How can ALD be used to mitigate prosaic limitations (FE, multipactor)?
Can ALD significantly decrease the cost of SRF linacs?



We, (Alex Gurevich) a cure for quench fields.

The primary niobium layer is covered with an insulator and superconductor.
The top layer has high T, screens quench fields from the bulk niobium.

Multiple layers permit almost arbitrarily large accelerating fields.

H, = 324mT

H, = 150mT

‘._

d d~30-50nm
would give Eq.c ~ 100 MV/m

(A. Gurevich, A. P. L. 88. 012511 (2006))




Why layered superconductors can have higher quench fields.

% Vortices in superconductors move in AC fields.
= rf losses.

% Nb can reach the highest field without vortices.
= Use as bulk material.

% Vortices aren't stable in thin layers.
= Use layers to "screen” fields from bulk.

% This is a hard geometry to construct.

Very weak
dissipation

21
¢ : Strong vortex

1 dissipation

0 H,, H

BULK  LAYERS

Nb is "bulk” material, i.e. 200 nm.
Layers should be ~(10 - 30) nm
Nanometer precision required for layers

No shorts or voids in insulators.
ALD can do it.

A. Gurevich. Appl. Phy. Let. 88 012511, (2006)




Atomic Layer Deposition (ALD)
- Atomic Layer by Layer Synthesis: a method similar to MOCVD

* Used Industrially
Semiconductor Manufacture for “high K" gate dielectrics
"Abrupt” oxide layer interfaces
Pinhole free at 1 nm film thicknesses
Conformal, flat films with precise thickness control

* Electroluminescent displays
No line of sight requirement
Large area parallel deposition
Large Surface area, high electric field applications

* Parallel film growth technique, (insides of large tubes).



Atomic Layer Deposition may be useful.
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ZnO ALD on Carbon Nanofibers

Before Coating After Coating 15 nm ALD ZnO

B ALD coats front, back, sides
B Conformal coating on all exposed surfaces



ZnO ALD on Carbon Nanofibers

[ Before Coating After Coating 15 nm ALD ZnO

B Conformal coating on all exposed surfaces



Al,O, on MEMS Microengine Gears

(a)

B Conformal coating on all exposed surfaces
B Aspect ratio (channel length/width) ~80



What is a Catalyst?

Reaction without catalyst

Catalyst

Cheap feedstock @ Expensive products
Useless byproducts

Ey (X=Y)

Energy

Reaction path

Huge Market for Catalysts:

B More than 90% of all industrial chemical processes are catalytic.
— 50% of gasoline from catalytic cracking

— 100% of the NH, for fertilizer

m U.S. sales in excess of $500 billion per year.
B Fuel and chemical industry is the primary producer and consumer of energy

B Emissions reduction (catalytic converters)



We can measure the density spectrum of enhancement factors.

- From Dazhang's talk yesterday . . .

 Insert Polaroid film near the Be
window

Superconducting Coils

8.8 MV/m

« Direct pictures of how
field emitters on the Be
window change with RF
field can be taken

2009-1-25 D. Huang et al. NFMCCO09, LBNL




Our spectra agree with others.

- We assume that the density of emitters looks like Ae™®.

- A wide variety of data is consistent with this parameterization.
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Smooth coatings can change the spectrum of enhancements.

* What is the effect of a ~100 nm conducting coating?
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* This example should give_three times higher rf gradients.




Surface layers can address pulsed heating in NCRF.
* You can build a composite material with different properties.
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To do:
- Extend OOPIC Pro modeling to currents of ~10 A.

=» Incorporate MD calculations in plasma simulation: Coulomb explosion, sputtering,
creep, surface and oxide parameters.

- Systematic studies of shorting currents hitting arcs in B fields.
- Develop inclined cavity experiment

- Better define ALD experiments to produce "Breakdown-Proof” cavities.



Summary

The modeling effort is beginning to be productive.

The button test program has not been productive because
The cavity stored energy was low
Breakdown occurred elsewhere

It looks like high pressure cavities have the same limits as the open cell cavity
They condition faster, perhaps because they have a much smaller active area.
But they may have other problems (radiation induced resistivity, d ray runaways)

We should look at:

maghetic field effects
Surface orientation w,r,t B field,
Magnetic insulation,
More stored energy on buttons.

In-Situ ALD
Dielectrics have more potential barrier,
Metals can lower the local fields, should cure Breakdown and field emission.



