6D Cooling in MICE

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

Longitudinal Cooling in MICE

'Normal' MICE Reduces and Measures 6D Emittance

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

Longitudinal Cooling in MICE + some other stuff

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

Possible Experimental Goals

	MICE
Accelerator Demonstration	
Ionisation Cooling Demo	
Emittance Exchange Demo	
Reverse Emittance Exchange Demo	
Physics Processes	
H2 Physics Processes	
He Physics Processes	
LiH Physics Processes	
Be Physics Processes	
Physics Processes in High Bz	
Beam Dynamics	
Straight Solenoid Beam Dynamics	
Tilted Solenoid Beam Dynamics	
Helical Solenoid Beam Dynamics	
Magnetically Insulated Beam Dynamics	
PIC Beam Dynamics	
Energy Recovery	Limited by available RF Gradient
Longitudinal Dynamics	Limited by available RF Gradient
Engineering	
Liquid H2 Safety	
Liquid Vessel Window Design/Operation	
High Pressure Gaseous H2 Safety	
Pressure Window Design/Operation	
Be Window Design + Handling	
LiH absorber Design + Handling	
Integration of RF Equipment	
Integration of magnetically insulated RF	
Integration of high pressure RF	

Integration of HCC RF HCC Construction

Simple Wedge

- Simple wedge
 - Induce dispersion in input beam
 - Measure (reverse) emittance exchange
- To what purpose?
 - "Proof-of-principle" demo for wider community
 - Test material physics model in a different geometry
- Open questions
 - Which material?
 - What opening angle?
 - Can we measure an effect?

RFoFo Model

- Induce some y-pz correlation in particles at the wedge
 - Working to approximately follow RFoFo lattice MUCOOL Note 314

Non-Linearity

- Look at these particles at tracker
 - Tells us what correlation we need at the tracker to get dispersion at the wedge
- Pretty non-linear
 - Fit using 4th order polynomials
 - Probably needs 5th order...
 - This is probably generated by Larmor angle as a function of p_z
- To get a "non-linear" match
 - Insert beam at wedge center
 - No material processes
 - Transport to tracker
 - Apply px, py, t -> -px, -py, -t
 - Time Parity operator + reflection in z

Beam Transport

Emittances (no material)

- ~Few percent emittance change from non-linearities
 - By making beam optics symmetric, emittance change is symmetric
 - How sensitive to initial beam?
 - How sensitive to magnet misalignment etc?

Wedge Geometry (G4MICE)

Fancier geometries are available

Emittances 100° LH2 Wedge

- $D_y = 100 \text{ mm}$
- 100° ~ RFoFo wedge
 - No windows
- Small longitudinal cooling
- Drowned by non-linearities
- Overall ~ 5% 6d emittance reduction

More cooling?

- What can we do to get more longitudinal cooling?
 - Wang and Kim, MUCOOL Note 224

$$\epsilon'_{y} = -\eta \epsilon_{y} + (\partial_{x} \eta) D_{y} \epsilon_{y} + \frac{1}{2} \eta \hat{b}_{s} \beta_{T} L + \frac{1}{2} \beta_{T} \chi + \frac{1}{2} \mathcal{H}_{y} \chi_{\delta},$$

$$\epsilon'_{z} = -(\partial_{x} \eta) D_{x} \epsilon_{z} + \frac{1}{2} \beta_{L} \chi_{\delta} + \frac{1}{2} \gamma_{L} (D_{x}^{2} + D_{y}^{2}) \chi,$$

- More dispersion
- Bigger dE/dz => Bigger d/dx (dE/dz)
- Bigger wedge angle
 - Geometrically challenging
- Bigger longitudinal emittance
 - Non-linearities are already tough

Emittances 90° LiH Wedge

- $D_v = 200 \text{ mm this time}$
- ~ 25% longitudinal emittance reduction
- 6D emittance reduction
 - 7 % in mm
 - 20 % in mm³
 - IH2 is much worse
 - Plastic is similar

Measurement

Reconstruction plane

- MICE measures time at TOF
 - Use measurements in tracker to extrapolate time to the tracker
 - Measure 6D phase space coordinates at a single z-plane
 - Gives a time resolution < 90 ps at tracker
 - Includes material effects esp diffuser
 - Includes tracker resolution
 - Assume pessimistic TOF resolution
 - Assume can't use TOF0-TOF1 dt to help
 - Note long tail

Longitudinal Emittance Measurement

- A statistical error in detector gives a systematic error in RMS emittance
 - Analogous to addition in quadrature
 - Complicated by correlations between truth and error
 - Not a pure convolution
 - If we understand the detector we may be able to correct this offset
 - In any case we can measure a clear cooling signal
- Statistical spread comes purely from statistical spread in true distribution
 - Due to stochastic processes
 - Due to initial beam distribution
 - Nothing to do with detector error
- $\epsilon_{_{/\!/}}$ residual << cooling in $\epsilon_{_{/\!/}}$

Beam Selection

- MICE beam has no time distribution and wide energy distribution
 - Nb one would have to allocate time at upstream tracker (no rf)!
- Beam setup was baroque in these simulations
 - Want to choose beam carefully to suppress optical heating (and cooling)
 - Baseline beam selection operates by selecting for beam moments
 - In principle can select arbitrary beam moments
 - In principle can derive non-linear beam heating from high beam moments
 - 4th order optics => 5th order (higher?) beam moments affect emittance
- Practical constraints may prevent this from working
 - Calculating high moments for a large selection of particles, in high dimensional spaces, needs some care
 - Also big matrix inversion required
- I would like to demonstrate to myself that I can do this to adequate precision

Beam Selection

- Moment algorithm is not so pretty
 - I understand its relation to beam optics
 - But can produce negative weightings
- Delaunay algorithm looks nice
 - But PC runs out of memory > 1e3-1e4 particles(!) in 6D
 - Not parallelisable

MICE Step IV - Summary

- We can certainly measure longitudinal cooling in MICE IV
 - We should probably scan over a few values of wedge opening angle
 - We should probably scan over some different materials
- Do we have time for IH2? Or LiH for that matter?
 - It is possible to go back to MICE IV at the end of MICE
 - Plastic absorber may be preferable
- Need to:
 - Select materials, parameters
 - Design absorber
 - Solid absorber could/should be very simple
 - Manufacture

Possible Experimental Goals

	MICE	MICE-IV Wedge	
Accelerator Demonstration			
Ionisation Cooling Demo			
Emittance Exchange Demo			
Reverse Emittance Exchange Demo			
Physics Processes			
H2 Physics Processes			
He Physics Processes			
LiH Physics Processes			
Be Physics Processes			
Physics Processes in High Bz			
Beam Dynamics			
Straight Solenoid Beam Dynamics			
Tilted Solenoid Beam Dynamics			
Helical Solenoid Beam Dynamics			
Magnetically Insulated Beam Dynamics			
PIC Beam Dynamics		_	
Energy Recovery			Limited by available RF Gradient
Longitudinal Dynamics			Limited by available RF Gradient
Engineering			
Liquid H2 Safety			
Liquid Vessel Window Design/Operation			
High Pressure Gaseous H2 Safety			
Pressure Window Design/Operation			
Be Window Design + Handling			
LiH absorber Design + Handling			
Integration of RF Equipment			
Integration of magnetically insulated RF			
Integration of high pressure RF			
Integration of HCC RF			
HCC Construction			

Wedge in MICE Step 5

- Wedge with re-acceleration
 - Induce dispersion in input beam
 - Measure emittance exchange including reacceleration
- To what purpose?
 - Demo for wider community
 - Test integration of components in different arrangement
 - E.g. dark currents may pass through wedge ends
- Open questions
 - Can we get the beam dynamics to work?
 - Do the wedges shield detectors from RF cavity radiation?

Concept (ii) - Simulations

Beam dynamics is not straightforward - doesn't look promising!

Tilted Solenoid Version of MICE

- More complicated:
 - Can we leverage the equipment used in MICE to build a tilted solenoid type cooling cell?
 - Test emittance exchange including energy recovery
 - Test tilted solenoid beam optics

- **Problems**
 - Focus coils bigger than MICE
 - Should be able to fix this
 - Forces on coils?
 - Cooling performance?
- Nb part of a ring with feasible injection and low B-Field RF

Closed Orbit and Dispersion

Cooling Performance

- ~Reasonable performance
 - Equilibrium emittance is good
 - Acceptance is too low
 - Work in progress

Interim Report on expts after MICE

<u>Preamble</u>

Several presentations related to the uses of the MICE infrastructure after MICE PHASE II were made at MICE CM22.

The MICE executive board "concluded that it would be good if a smaller group of MICE physicists would take the time to go through these various proposals".

The question "which is the most relevant R&D program after MICE" was excluded as not being within MICE competence.

John Cobb (chair)
Chris Rogers
Malcolm Ellis
Yoshi Kuno

MICE Timeline (Zisman, 21-10-2008)

·Best present estimate

Probable Aspirational MICE Schedule as of October 2008

Low B-Field vs RF Cooler

- If RF Cavities are very sensitive to B-field MICE may not work
- Can we hack MICE to reduce the B-field?
 - Important if dE/dB > dB/dz

High Pressure Gaseous H2

- Place trackers in high pressure gas
- Add pressure vessel windows before and after tracker
- Retrofit spectrometer solenoids as pressure vessels?
 - Probably not possible
 - Issue knock-on electrons, in tracker, coincident with muons
 - Also issue for MANX detectors in HCC
- Test "downstream window" of a high pressure cooling channel
 - Thinner, smaller radius
- Test "upstream window"
 - Thicker, higher radius
- Try to get a cavity working in beam first!

High Field MuScat

- Multiple scattering effects change at high field
 - Early MuCool note not conclusive
 - B field effects tracks between scatters on microscopic scale
 - dx' from B ~ dx' from scatters
 - Effect kicks in ~ 10 T
 - Can (and should) be simulated
 - One would want to verify with experiment I think
- NFMCC has access to some ~10 T solenoids...
- Is MICE sensitive to such effects at ~4T?

Possible Experimental Goals

	MICE	MICE-IV Wedge	MICE-Tilt	HP Gas	BField-MuScat	MANX	None
Accelerator Demonstration							
Ionisation Cooling Demo							
Emittance Exchange Demo							
Reverse Emittance Exchange Demo							
Physics Processes							
H2 Physics Processes							
He Physics Processes							
LiH Physics Processes							
Be Physics Processes							
Physics Processes in High Bz							
Beam Dynamics							
Straight Solenoid Beam Dynamics							
Tilted Solenoid Beam Dynamics							
Helical Solenoid Beam Dynamics							
Magnetically Insulated Beam Dynamics							
PIC Beam Dynamics							
Energy Recovery							
Longitudinal Dynamics							
Engineering							
Liquid H2 Safety							
Liquid Vessel Window Design/Operation							
High Pressure Gaseous H2 Safety							
Pressure Window Design/Operation							
Be Window Design + Handling							
LiH absorber Design + Handling							
Integration of RF Equipment							
Integration of magnetically insulated RF							
Integration of high pressure RF							
Integration of HCC RF							
HCC Construction							