

First Beam in the MTA beamline

Description, first beam and further commissioning plans

C. Johnstone, F. Garcia, M. Gerardi, B. Higgins, M. Kucera , M. Kufer, D. Newhart – commissioning team

MCTF Purpose: MuCool Test Area and Beamline

- A new experimental area, the Muon Test Area,(2003) has been constructed to develop, test, and verify muon ionization apparatus using the 400-MeV proton beam from the Fermilab Linac
- Since muon facilities involve the capture, collection and cooling of ~10¹³ muons at a repetition rate of 15 Hz, conclusive tests require ~10¹³ protons/pulse at 15 Hz (full Linac beam up to safety envelope)
- The beamline designed for MTA experiments included specialized insertions for linac beam diagnostics and beam measurements, greatly enhancing the functionality of the beamline.
- Installation of the beamline was complete fall, 2008.

As such it represents the only facility in which experiments have direct access to a primary beam

MCTF Background/Recent History, MTA Beamline

As-built MTA Beamline, Nov., 2007

- Pulsed C magnet capable of 15 Hz Linac "pulse" selection
 - Entire Linac pulse is extracted
 - low loss operation

Emittance Measurement section

MTA beam event

- Initial startup
 - Reuquired dedicated studies (HEP beam)
 - Booster beam event
- Interim configuration -
 - Parasitic to HEP
 - Commandeer Linac Study event
- Final configuration
 - Dedicated MTA event TLG
 - "single-pulse" extraction
 - Parasitic to HEP

All Exp. Meeting 15 Dec 2008

MTA Beam to 1st Beamstop

- Dose in shielding gap
 - Full Linac intensity
 (1.6 x 1013 p/pulse)
 - Just under 1 mrem/hour
 - With fence in place
 - Radiation Area:
 - Limit 100 mrem/hr
 - ~1 pulse/minute

Single pulses were taken under operator control via beam switch in MCR

- First beam observed on 5th pulse
- After C magnet tuning
 - Full beam extracted
 on toroid UTR01
 - 2E¹²protons/pulse _____
 - Low losses in line
 - Beam fully extinguished in 400-MeV transfer and diagnostic line

Beam profile

C.Johnstone

All Exp. Meeting 15 Dec 2008

Beam to 1st beamstop

- After tuning C magnet strength and timing
 - "Secondary" radiation detected downstream of shield wall; no radiation observed prior to C magnet tuning
 - If beam is stopped upstream of beamstop, secondary radiation does not penetrate shield wall; confirms shielding simulations
 - Rad detectors are integrated; rad level cannot be extracted from single pulses
 - UTR01 was not initially datalogged, hence is not present on left side of plot

Rad det #2024, 2025, 2026 are located at rollup door, hatch, and downstream end of shield wall @beampipe, respectively. Note UTR01 was not data logged until ~21:30.

Summary

- Approved: 1 hour beam time
- Used: 47 of our 60 allocated beam pulses
- Beam: on 5th pulse
- After C magnet "tuning"
 - beam was fully extinguished in 400-MeV transfer and diagnostic lines
 - fully extracted into MTA beamline
- Diagnostic timing and trigger problems
 - 8 pm on Friday before Thanksgiving
 - BPM timing has since been resolved in principle

- Supply work
 - rms current in quad bulk supply being increased
 - C-magnet droop
- BPM timing "resolved"
- Investigating MW readouts
- Ready for further commissioning beam;
 - opportunistic until interim controls complete (Jan, 2009)
- Start of beam program dependent on final Radiation Assessment and installation of the all the required shielding. Installation of the all necessary shielding still requires some simulation effort and represents a significant mechanical effort