EMMA Status

J. Scott Berg Brookhaven National Laboratory For the EMMA Collaboration NFMCC Collaboration Meeting 19 March 2008

Overview of EMMA

- No non-scaling FFAGs has ever been built
- Study single-particle dynamics in linear non-scaling FFAGs
- Same accelerating mode as muon FFAGs
- Small emittance beam probes large acceptance
- Combined-function doublet lattice

Uses displaced quadrupoles

Machine Capabilities

 Study different lattice configurations Different tune ranges Different time of flight behavior Independently vary field and gradient Variable quadrupole displacement Study properties of accelerating mode Adjust RF voltage and frequency

Tune Plane

Time of Flight vs. Energy

Machine Capabilities

Measure fixed-energy properties

- □ Tune vs. energy
- □ Time of flight vs. energy
- Lattice configuration chosen based on these properties

Inject/extract over entire energy range
 For measuring fixed-energy properties
 Energy measurement of accelerating beam

Tune vs. Energy

Machine Parameters

- Electrons, 10–20 MeV kinetic energy
- O 3 mm normalized transverse acceptance
 - Probe with small emittance beam
- O 42 doublet cells
- 016.6 m circumference
- O 19 1.3 GHz RF cavities

About every other cell
 Maximum 120 kV (180 kV) per cavity

EMMA Layout

EMMA Main Ring Lattice

Main Ring Magnets

Short, large-aperture
 D is 65 mm long, 53 mm inscribed radius

- Magnets on motorized horizontal sliders
- OClamp plates shield kickers

Main Ring Magnets

Prototypes delivered and measured
 Shimmed D to extend good-field region
 Clamp plates thickened (saturated)
 Contract placed
 Steel ordered
 All ring magnets delivered by 1 August 2008

Magnets; Gradient Error in D

RF Cavities

1.3 GHz cavities, 5.5 MHz tuning range
Cavity and associated components designed
Aluminum prototype delivered
Copper prototype delivered by 3 April 2008
Cavities delivered by 14 August 2008

RF Cavities

RF Cavity Tuning Range

RF Power Systems

- 01 80 kW IOT
 - 2nd at a later stage, if needed
- Out to tender in April 08
- Cascaded distribution scheme
- Motorized 3-stub tuners

Frequency variation requires phase variation

Cascaded RF Distribution

Injection/Extraction

Inject/extract any energy from 10–20 MeV
 Two kickers due to different phase advances
 Inject to any point in 3 mm acceptance
 Handle all configurations
 Inject and extract to outside

Injection Section

Kicker

Injection/Extraction

- Doublet not reflection symmetric
- D near septum easier for injection/extraction
 - Larger aperture for F near septum
 - Beam moving right direction at septum
- Choose injection to be easy
 - Find closed orbit parameters for all energies
- Can't extract low energy unless move septum
 Can't move inj. septum: beam moves out

Injection with F near Septum

Injection with D near Septum

Diagnostics: Goals

- Find the beam the first time
- Find closed orbits, tunes, CS functions
- Find time of flight
- Measure transmission
- Measure energy
- Follow trajectories to measure 6-D acceptance
- Measure properties of probe beam

Diagnostics: Ring

- About 84 sets of BPMs (2 per cell)
- Resistive wall monitor
- OTR screen
- Wire scanner

Injection Line

- Measure properties of probe beam
 Measure beam current
- Match probe beam to main ring

Diagnostics (Extraction) Line

- Planning on two phases (cost)
- OMust measure energy!
- Measure transmission (Faraday cup)
- Measure probe transverse emittance
- Measure longitudinal profile
 - Electro-optic monitor
 - Deflecting cavity too expensive

Septum Magnets

Challenges

Large bend: 65–70° in < 15 cm
Minimizing stray fields on beam
Acceptable field uniformity

Septum

30

Х

Heutrino Factor Muon Collidet

Ion Pumps

22 pumps around the ring
 Again, stray fields are a concern
 Fields potentially as high as a few Gauss
 Some measurements from manufacturer
 Direction unknown
 Currently making field measurements

Space Charge & Beam Loading

- Don't want collective dynamics confusing single-particle dynamics
- More charge desirable for diagnostics
- Less charge to reduce collective effects
 - Space charge
 - Beam loading
 - Short range wakes and higher order modes
- ${}^{\odot}2\times10^8$ seems the best compromise

Commissioning

○ Fixed-energy for many turns Find closed orbits Compute tunes, time of flight O Beam loading and HOMs: energy loss Restore with RF (zero crossing) No RF, mismatch cavity frequency to beam Slow energy loss, acceptable?

Commissioning

Concluding Remarks

- Have a design which
 - Allows extensive study of machine behavior
 - Has extensive diagnostics for these studies
- Have begun procurement for major items
 - Magnets, cavities
- Finishing off designs of all components
- Simulations ongoing
- $\odot\,\text{Will}$ be ready to run in Fall 2009

Acknowledgments

- This is the work of many people in the EMMA Collaboration
- Particular credit goes to the Daresbury Laboratory team
- Particular thanks to Neil Bliss at Daresbury for gathering all the information together for me

