

- Introduction
- Requirements
- Funding
- Machine design
- Hardware status
- Conclusions

Introduction

- NS-FFAGs: part of baseline
- No such machine ever built:
 - resonance crossings
 - asynchronous acceleration
 - tiny momentum compaction
- Need EMMA
- Funding: generic as possible
- Study proton, carbon, etc
- Proof-of-principle NS-FFAG
- Main emphasis: still muons

- Demonstrate that non-scaling optics work
- Study resonances in detail:
 - emittance growth vs acceleration rate
 - " vs tune variation
 - " vs parabola shape
 - effect of errors
 - detailed probe using injector
- Study longitudinal dynamics in detail:
 - transmission vs parameter values
 - emittance growth vs parameter values
 - tof behaviour; effect of non-parabolic nature
 - effect of moving parabola
 - effect of errors
- Check effect of transverse dynamics
- Compare with predictions

- Needs a flexible injector:
 - injection at any energy
 - small emittance
 - sufficient intensity in a single bunch

Energy Recovery Linac Prototype at DL

Funding

- EMMA collaboration: Adams, BNL, CCLRC, CERN, Cockcroft, Grenoble, FNAL, Rostock, TRIUMF
- EU FP6 too big
- UK Basic Technology:
 - generic as possible
 - three WPs
 - EMMA
 - charge particle therapy other applications
- Successful!
- Funding starts 1st March
- Work already started
- Total: £8.2M
- For EMMA construction: £5.6M

Item	Cost / £k
RF cavity system	1641
Diagnostics	492
Magnets	502
Mechanical and vacuum chamber	391
Vacuum equipment	134
Controls	122
Electrical	443
Cooling and services	70
Civil engineering	34
Hardware sub-total	3830
Staff	1808
TOTAL	£5638k

EMMA Design

- 1st attempt: July 2006 (for BT proposal)
- Design Reviews:
 - 30th November
 - 4th-5th January: fixed some parameters

nothing is easy!

- 26th-28th February: start of change control
- Basic lattice:

10-20 MeV (scaling) Doublet (cost?)

42 cells (number of cell.turns)

1.3GHz RF (scaling + ERLP)

19 cavities (see later!)

394.481mm cell length

16.57m circumference

Documentation at:

http://www.conform.ac.uk/documents/emma

- EMMA operation:
 - 20Hz
 - 1 bunch
 - 80pC
 - $\varepsilon_{n,rms}$ = 3 π mm mrad
 - 2ps rms length
 - scan aperture

Magnets

- Main requirement: independent di- and quadrupoles
- Magnets are mainly quads

Magnets

Pipe apertures:	-21.6 to 20.7	-6.1 to 18.8
Vertical:	17.8	23.4
Shifts:	4.9 to 10.2	28.7 to 48.6

3D modelling underway Prototypes to be ordered soon

Different Lattices

Requirements:

- Maximum total voltage: 5MV(!)
- Allowable max voltage: >2.5MV
- Frequency: 1300.000, variable by -4.028 to +1.554
- Aperture: ~38mm

Original solution:

- 1 cavity every 2 cells
- 7 IOTs for power, distributed by cables
- Difficult to inject or extract
- Two possibilities:
 - 1 cavity every 3 cells
 - 1 cavity every 2 cells minus 2

RF

Studied orbit distortion

Celebrating 50 years of world class science

RF Cavities

Maximising shunt impedance very important

RF IOT

Injection and Extraction

Requirements:

- 55ns revolution time
- Inject & extract at any energy
- Scan EMMA dynamic aperture
- 1 & 2 kicker options studied for practicality
- 1 looks difficult

Injection and Extraction

Injection and Extraction

Diagnostics

Measurement	Device	Number	Required resolution
Beam position	4 button BPM	2/plane/cell in ring 4 in injection & diagnostics lines	50µm
Beam profile	OTR screens	3 in ring, 1 in injection and diagnostics lines	100µm pixel size
	Wire scanners	≥4	
Beam current	Resistive wall monitor	4 RWMs 1 scope	2%
Phase	Resistive wall monitor	As above	10 degrees
Transmission	Resistive wall monitor Faraday cup	As above 1	2%
Beam loss	Beam Loss Monitor	4	2%
Momentum	BPMs and TOF from RWMs		100keV
Emittance	Screens	3 in diagnostics line	10%
Extracted momentum	Spectrometer	1 in diagnostics line	1%
Longitudinal profile	Transverse deflecting cavity and screen	1 in diagnostics line	20keV and 5 degrees

- Requirements agreed
- Hardware under study, but......

Space Charge!

- EMMA operation:
 - 1 bunch
 - 80pC
 - $\varepsilon_{n,rms}$ = 3 π mm mrad
 - 2ps rms length
- Linear tune shift \(\Delta\O = -0.68\) per turn!
- Linear part can be corrected; non-linear is a problem

4th order resonance

Can be corrected:

- reduced charge
- increase pulse length
- increase emittance
- increase # of bunches

Conclusions

- EMMA is a crucial R&D project for the NF
- Now funded in the UK
- Funding starts on 1st March:
 - construction complete Q3 2009
 - commissioning complete Q2 2010
- Design work already started
 - lattice done
 - magnet modelling advanced
 - RF modelling started
 - injection & extraction being designed
 - diagnostics specified
 - electrical, civil, etc investigated
- Basic design parameters complete by end February

