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Gradient limits have been well understood for >100 years.

Many have contributed - very early:

Paschen, Millikan Michelson, Lord Kelvin
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In 1904, Lord Kelvin argued that: . j
- Field emission is electrons (electrions), 88 s P
» Electron emission may imply ion emission (damage),  *"° L
+ Local fields of ~ 9.6 6V/m would do this, Dol A Gasbreakdown
- Tensile strength is an important parameter, : /]
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- Befter experiments are needed.
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1 RF Breakdown and gradient limits
* It would be nice to have everything important on one page. (slide)
* Three new ideas:

v Breakdown triggers

v Surface damage
?  Arc Physics

10 - 100 J stored energy

E Field Power density ~ 10! W/m’

\, / Stress ~ 300 MPa

Fracture Field emission heating Discharge
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We can calculate

- Emax vs. Pulse Len.

- DC breakdown

- BD rate vs. E

* Material dep.

- and more . ..

all aspects

normal DC & rf operation.
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The plasma physics of the discharge has not been explored.

* Inadense, metallic plasma, recombination radiation (called impurity radiation in
the fusion community) seems to be the dominant effect & is not well understood.

* Arcs happen fast, and ions don't drift far = very dense plasmas
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"Reasonable” guesses at plasma parameters
- From the crater dimensions, one guesses ~10'” atoms, ~10' ions are produced

* Assuming a discharge length of 0.1 us (short for us, long for SLAC), the ions will
only move 0.05 cm,

+ This gives ion densities on the order of 10¥cm™.
- With electron temps of 10 - 100 eV, this gives many MW of UV and x- rays.
+ We need a discharge model (PIC code) to do this right.
We have started to use OOPIC, which we got from Peter Stoltz of Tech-X.

They have a SBIR proposal in to consider recombination (impurity) radiation.

Many questions:
Power coupling in to plasma?, thermal equilibrium? Line/blackbody/brems rad?



Understanding Arcs

* The radiation can cover a wide range of wavelengths. - makes expt's messy.
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2 High-pressure cavities

* The high pressure + high magnetic field environment is not well understood..
Modeling will help, but some mechanisms are new.

- If intense particle beams transverse high pressure cavities with high electric
fields, transient radiation-induced conductivity will be produced.

- This ionization will take some time to recombine, and during this period the gas will
become resistive.

* Radiation induced loss of Q has been measured in a reactor environment.
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Measuring radiation-induced conductivity in gasses.
« We will try to measure it with a synchrotron radiation beam.

+ The first experiment is almost trivial. Requires a bending magnet beam.

Resonant Structure
in Air

Network

_ o Analyzer
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* Need this as a function of E.
» Scaling: n. ~ p, (recomb rate ~ 1/trecomp ~ p), S0 Teon ~ f(E/p), near Paschen limit

* EMP physics



3 MICE RF Backgrounds

- We claimed in the MICE proposal that we understood backgrounds.
- Data from the MTA has shown that multipactor may be a factor in backgrounds.

* What we saw: What's happening:
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- We should be able to cure this. With TiN coatings.



What is multipactor?

Multipactor is resonant amplification of loose electrons in the cavity.

* The rates we measure will have to be corrected for the absorption and scattering
in the walls and supporting structure of the cavity. This is underway.



4 Superconducting rf R&D

» All the HEP energy frontier machines (ILC, CLIC, NFMCC) rely on acceleration
gradients larger than those generally produced.

* The technology of RF superconductivity is not mature.
Cavities don't routinely meet theoretical limits.
Surface treatments are not understood.

 Argonne is basically a material science lab (with accelerators).

A workshop at Argonne in November tried to bring material science and ILC/SRF
communities tfogether.

» This meeting was very successful:
We have started a program to look at Atomic Layer Deposition of Nb for SCRF.
Planning a coordinated ILC / SRF materials proposal with Claire Antoine
Had a Fermilab ILC/SRF materials Seminar at Argonne Jan 15.
Interest in using ANL instrumentation.
ANL management is very involved (Four divisions).




Atomic Layer Deposition

+ Atomic Layer Deposition is not strictly a coating technique. Single monolayer
surfaces are grown one-at-a-time by a repetitive process with a deposition rate
of ~microns/hr. Size and shape of substrate do not matter.

* The failure modes of SCRF . .. ... can be cured with this technique
Field Emission: Coatings increase radii of asperities, lowering local field
He1: Multiple coatings can shield quench fields (A. Gurevich)
High field Q slope: Pure coating on good substrate eliminates most causes
Contamination Materials can protect the niobium surface

- An experimental program is underway..
Pellin, Elam, Antoine, Seidman, Norem + . .

Phase I: study small samples, Understand chemistry
Ellipsometry, Atom Probe Tomography, SIMS

Phase IT: coat and test single cell cavity




Conclusions:

* MTA work is progressing slowly. We have discovered low power multipactor in the
201 cavity

- We are extending modeling and experimental work to high pressure cavities, arc
parameters and other gradient limits.

- We can understand and predict all aspects of warm cavity limits, are extending
the model to SCRF. Muons need SCRF too.

+ Argonne management seems eager to get into this business. It is not crowded.



