20-50 GeV Muon Storage Rings

C. Johnstone and G. Rees NFMCC Meeting UCLA Jan 29-Feb 1, 2007

Introduction: Muon Storage Rings for a Neutrino Factory

Neutrino beam/ Storage Ring energies 20 and 50 (max) GeV **Production Straight** Muon beam divergence* 0.1/ $\gamma \rightarrow$ 0.2/ γ Muon beam normalized emittance* **30,000**π mm-mrad (95%) ±1 → 4% (RF → no RF) Momentum acceptance Note these two parameters dictate beam size in production straight Peak magnetic field (assume NBTi SC) ~7T Declination angle: 3 and 7x10³ km detector ~10° and 36° **Bunch train length** 400 nsec (120 m) 100 nsec **Bunch train spacing**

Overiding design Goal:

maximize muon decays in production straight or ratio of production straight(s)/circumference

*small compared to neutrino beam divergence, rms $\sim 1/\gamma$ *assumes minimal, mainly transverse cooling

Muon Decay and Storage Ring

- A triangular and bowtie shape with two production straights and two baseline experiments
- Racetrack shape has single production straight, uncoupled straight

Far

Detector

Near Detector To Far Muon Decay Detector 1 Ring muons decay to neutrinos) Neutrino Factory Far Detector

Storage Ring Designs

- Racetrack
 - 2 rings (2 tunnels): 2 detector sites*
 - 1 long production straight/ring □ 1 detector site
 - Each ring supports both charge species of muons circulating in opposite directions (if opposing straights are identical)
 - Alternate injection batches between rings
 - Isosceles Triangle Ring
 - 2 rings (in 1 tunnel): 2 detector sites
 - 2 production straights/ring \Box 2 detector sites
 - Each ring supports only one charge species
 - Interleave and separate μ^+/μ^- batches by 100 ns (requires RF)
- Bowtie Ring new
 - Properties similar to triangle ring

*of course 1 ring/1 detector is also an option for the racetrack

20, 40, 50 GeV Current Design Overview

- 20, 40, and 50 GeV lattice ring designs complete
 - Arc: FODO cells with ~6T dipole fields:
 - 72° arc cells, combined-function magnets (triangle, for now)
 - 90° arc cells, separated-function, tunable magnets (racetrack design, for now)
 - Combined dispersion suppressor and matching sections
 - Designed for MW intensities warm bores of SC
 - Clad with Pb (absorbs 80% of e± beam power)
 - 1 cm of W @50 GeV will also sufficiently protect SC coils
 - Production straight design:
 - SC solenoids minimize beam size
 - NC, 30 cm -bore quadrupoles confines cryogenics to arcs
 - Permanent magnet ~30 cm bore quads appear feasible
 - Background sweep dipoles at ends of production straights

$20 \rightarrow 50 \text{ GeV}$ upgrade; present status

Isosceles:

- modify lattice + some magnet changes required; <u>realignment</u>
- Muon/neutrino beam divergence fixed to 1/ γ at both energies

Racetrack:

- no changes: 40 /50 GeV ring installed and can be operated @20 GeV;
- bores accommodate 20 GeV beam and shielding
- Muon beam rms divergence increases from 0.1/ γ @20 GeV to 0.14/ γ @40 GeV and 0.19/ γ @50 GeV

These approaches are not specific to storage ring shape

Racetrack Storage Ring

Ring operates at 20 and 50 GeV – Arc dipoles powered at 2.5 and 6.3 T

Background sweep dipoles at end of each straight

Potential dual far/near detector locations

Apex angle of storage ring triangle

C. Prior, 1/25/06 ISS scoping study

Triangular Muon Storage Ring

20/50 GeV Lattice for Racetrack Ring

Table name = TWISS

Production Straight

20 GeV Lattice Functions for Triangular Ring (Excluding Production Straights)

n Determines Minimum Ring Circumference:

Bunch Trains continued

*no interleaving required in dual racetrack scheme

Site concerns for 7 & 3 x10³ km detectors

- Vertical depth (arcs << straights):</p>
 - Racetrack:

Depth
$$\approx \frac{C}{2} \sin(36^\circ) = \frac{C}{2} (0.6) = 0.29C$$

Isosceles triangle:

Depth
$$\approx \frac{C}{3}\sin(10^\circ) + \frac{C}{3}\sin(36^\circ) = \frac{C}{3}(0.8) = 0.25C$$

 Conclusion: relative depths of two similar circumference triangular or racetrack - storage rings are very close

n=5 Storage Ring Parameters - updated

	PARAMETER	TRIANGLE 20 : 50 GEV	RACETRACK 20 : 50 GEV
С	ircumference	1573 m	1573 m
P	roduction straight	2x~378 m (2x~24%)	635 m (40%)
C	Pepth	~ <u>340 m</u>	~ <u>430 m</u>
а	cceptance (beam emittanc normalized, 95%	e) 4.8π cm (30π)	same
N	Iomentum acceptance	\pm 1-2% (RF determined)	±4%
r	ms prod divergence	0.10/γ : 0.12/ γ	0.12/γ : 0.19/ γ
G	Global Tune, ບ _x / ບ _y 10	0.79 / 11.15 : 10.44 / 10.64	10.23 / 9.24
β	xmax/βymax	117 m : 184 m	155 m / 167 m
P	eak Field arcs	6.4T	6.3T
P	Peak Field prod straight	4.3T : 6.4T*	0.2T**
*	solenoids ** quadrupoles		

Magnetic components:

- Racetrack:
 - Magnets, in particular SC arc magnets, will resemble design in feasibility I study – see figures below
- Triangle
 - Vertical mounting of SC elements in vertical return arc looks difficult
 - Should look at this aspect asap

Dipole (left) and cryostat design (right) for racetrack, Feasibility I Study

Site Considerations

Detector sites

- Coupled near/far detector sites in triangular ring (apex angles>~60°, triangle production efficiency rapidly declines)
- Uncoupled in dual-racetrack case
- Depth
 - Water tables
 - Geological constraints for tunnel construction
 - Civil engineering for tunnels "hundreds of meters" deep

Example: Fermilab Site-specific constraints: from Feas. I Study for a U.S. Neutrino Factory

- 50 GeV Fermilab Storage Ring: racetrack
 - 13° declination angle
 - circumference, C = 1753 m
 - 39% ratio (1 prod str./C)

Design predicated on ~6T SC

arc dipoles

600	Feet	Ring Vertical Drop	
10	Feet	Tunnel ceiling to floor	
10	Feet	Shielding above ring	
50	Feet	Undisturbed bottom layer of Galena Platteville	
10	Feet	For uncertainties in the above three numbers	
680	Feet	Total from Surface to Bottom of Galena Platteville	

Example: BNL site specific constraints: from Feas. II study for a U.S. Neutrino Factory

- 20 GeV BNL Storage Ring: racetrack
 - 10° declination angle
 - C = 358 m
 - 35% ratio

Design predicated on ~7T SC arc dipoles- (hence the short circumference achieved at 20 GeV)

Figure 1.5: Top view and cross section through ring and berm. The 110 m tall tower, drawn to scale, gives a sense of the height of the ring on the BNL landscape.

General concerns

- Site depth and civil engineering:
 - Fermilab and BNL have depth constraints, for example; the larger of the two, restricted to <200m down.</p>
 - The NUMI project at Fermilab entailed considerable civil engineering for an ~1 km long tunnel only 100 m deep – (won the 2005 civil engineering award)
 - Maintenance, water leaks are a problem even with the NUMI depth (muons are much nicer, however, from an activation standpoint)
- + of batches, assuming separate rings for $\mu^{\pm,}$ determines ring size
 - ~300 m / batch (400 ns for batch, 600 ns for kicker window)
 - interleave µ[±] batches in two different rings (otherwise only 1/2 # of batches for one ring)
- Number of batches + 7000 km detector site determines depth

Proposal: n=3 batches each sign muon in two racetrack rings

• Derived from 200 m depth constraint and two-ring, interleaving scheme for μ^{\pm} batches for the 7,000 and 3,000 detector sites.

Ring 1: $(l_1 + 2r) \sin(36^\circ) = 200m$ for 7,000 km detector *Ring* 2: $(l_2 + 2r) \sin(10^\circ) = 200m$ for 3,000 km detector current $r(arcs) \sim 48m$ $l_1 = 244m; l_2 = 1056m:$ production straight lengths $C_1 = 788m; C_2 = 2412m$ $Max \, \mathcal{E}ff_1 \approx \frac{244}{788} \approx 31\%$ $Max \, eff_2 \approx \frac{1056}{2412} = 44\%; \ avg \approx 37\%$

Proposal: n=3 batches different sign muons in two triangular rings

- Derived from 200 m depth constraint and two-ring, interleaving scheme for μ^{\pm} batches.
- 2 identical Rings (assume equilateral): $(l + r)\sin(10^{\circ}) + (l + r)\sin(36^{\circ}) = 200m$ for 3 and $7x10^{3}$ km sites $r(arcs) \sim 48-64m$; dispersion suppressor dependent l = 215m/199m; production straight length C = 945m; /999m $Max \, eff \approx \frac{2 \times 215}{945} / \frac{2 \times 199}{999} \approx 45 - 40\%$

Circumference and efficiency comparisons: Triangle vs Racetrack

Circumference	Triangle 52.8° apex ∠	racetrack
1609	49.6%	38.2%
1258	42.8%	34.9%
944	33.2%	29.9%
804	27.6%	26.3%
629	4.7%	19.7%

Time Structures

- Racetrack rings: 3 batch scenario
 - Ring 1: 3 batches of either μ^+ or μ^-
 - 788 3x120 = 428/3 m or 475 ns for kicker window
 - Ring 2: 3 batches of either μ^+ or μ^-
 - For 3 batches: 2412 3x120 = 2052/3 m or 2280ns for kicker window.
 - This ring can handle 8 batches with 600 ns for kicker gaps
- Racetrack rings: 5 batch scenario
 - Ring 1: 1 batch of μ^+ and 1 batch μ^- counter-rotating
 - Ring 2: 4 batches of μ^+ and 4 batches μ^- counter-rotating
- Operate racetrack rings at different energies?
- Triangular ring: 3 batch scenario
 - Ring 1: 3 batches of μ^+ or μ^-
 - Ring 2: 3 batches of μ^+ or μ^-

General concerns:

- Site constraints
 - Depth
 - Detector sites/ different for triangle vs racetrack
- Emittance measurements:
- Injection
- Vertical orientation and mounting of SC magnets in triangular ring mechanically challenging?
- Tracking
 - Chromatic correction and other high-order correctors
 - Fringe fields

Recommendations for Future Work

- Further survey of potential detector sites with angular ranges covered by triangular and now bowtie storage rings – preliminary survey done
- Matching to FFAG accelerators
- Mechanical design for vertical mounting of SC magnets
- Design and comparison of injection
 - In production straight
 - In arcs
- Emittance measurement design and accuracy
- Tracking with fringe fields