Scaling FFAGs

Akira Sato Osaka University

Neutrino Factory and Muon Collider Collaboration Meeting, 30th Jan. 2007

Contents

- On going R&D of Scaling FFAGs
 - FFAG complex for a feasibility study of ADSR
 - FFAG based neutron source for BNCT
 - FFAG as a phase rotator for PRISM
- Harmonic Number Jump

FFAG complex for a feasibility study of accelerator driven reactor

Feasibility Study on ADSR Using FFAG Accelerator

Development of variable energy FFAG accelerator with high acceleration efficiency.

FFAG complex at KURRI

Parameters for FFAG complex

	Injector	Booster	Main
Eini	100 keV	2.5 MeV	20 MeV
E _{inj} E _{ext}	2.5 MeV	20 MeV	I50 MeV
Lattice type	Spiral	Radial DFD	Radial DFD
# of cells	8	8	12
Acc. scheme	Induction	RF	RF
k	2	2.45	7.5
coil/pole	coil	pole	pole
p _{inj} /p _{ext}	5.00	2.84	2.83
r inj	0.60 m	1.17 m	4.54 m
r ext	0.99 m	1.65 m	5.12 m

FFAG complex for ADS at KURRI

FFAG based neutron source for Boron Neutron Capture Therapy (BNCT)

FFAG based neutron source for BNCT

BNCT with FFAG-ERIT

Under construction at KURRI. Neutron beam would be provided in 2007.

FFAG-ERIT: radial-sector scaling FFAG

FFAG-ERIT: Vertical beta function & acceptance

Tracking results used TOSCA field.

Vertical beta function@target ~ 0.83 [m]

Vertical acceptance $\sim 3000\pi$ [mm-mrad]

(Horizontal acceptance $> 7000\pi$ [mm-mrad])

FFAG-ERIT: Surviving turn number

Mean surviving turn num. 810 turns

FFAG-ERIT: RMS emittance and energy spread

250C

FFAG as a phase rotator for the mu-e conversion experiment; PRISM

PRISM: Phase Rotated Intense Slow Muon source

- Goal: Search for Lepton Flavor Violation with B(μ-N→e-N)<10⁻¹⁸
- We need a high intense and high quality muon beam, such as
 - High Intensity
 - intensity : 10¹¹-10¹²µ[±]/sec
 - beam repetition: 100-1000Hz
 - muon kinetic energy : 20 MeV (=68 MeV/c)
 - Narrow energy spread
 - kinetic energy spread : ±0.5-1.0 MeV

phase rotation

- · Less beam contamination
 - π contamination < 10⁻¹⁸

Goal of the PRISM-FFAG project

- Construct a full size FFAG ring to be used at the mu-e conv. experiment.
 - with Large transverse and Momentum acceptance
 - suitable for the phase rotator
- Develop a high-gradient RF system (-200kV/m)
- Demonstrate phase-rotation, which make narrower energy spread beam

10-cell FFAG ring ----> 6-cell FFAG ring

Status and Schedule of PRISM-FFAG

- Beam optics design : done
- RF R&D: done, 170kV/m with sinusoidal wave @ 5MHz is expected.
- Construction of magnets
 - -2006/03 : 3 magnets: done
 - -2007/05 : 3 magnets: coming soon
- Field measurement for the first 3 magnets : done and in analysis
- Beam dynamics study using 1 cell magnet: in preparation, will start from Feb.?
- R&D for high-gradient sawtooth RF: in progress
- Construction of FFAG-ring: 2007
- Demonstration of phase-rotation using 6-cell ring with alpha particles: 2007

Demonstration of Phase rotation using 6-cell FFAG ring

- use 6-cell ring instead of 10-cell full PRISM-FFAG ring.
- · inject alpha particles to the ring
 - 241-Am 5.48MeV(200MeV/c)
 - degraded to 80MeV/c
 - collimate for small eminence beam

Tune Diagram of 6-cell FFAG

Phase Space of 6-cell FFAG

Requirements on RF for the study

- Large aperture cavity
- Vpp=30kV at 1MHz (100kV/m)
- h=3 (Trevo.=3.18us for 80MeV/c alpha)
- sawtooth is better

RF Cavity for PRISM-FFAG

RF AMP R&D

43kV/gap w/ 734Ω dummy cavity @5MHz

expected gradient w/ PRISM-cavity (954 Ω) 56kV_gap = 170kV/m

Towards to the high voltage sawtooth

underway

Figure 16: Image-16: Math(red)=gapB-gapA, wave=sawtooth01.csv with Atte.=8dB.

Muon Acceleration with Scaling FFAG using Harmonic Number Jump

Muon Acceleration with FFAG Accelerator

- Scaling FFAG
 - advantages
 - no resonance crossing : zero chromaticity
 - large dynamic aperture
 - problems (issues)
 - variable rf frequency : broad-band (low frequency & low field)
 - not small beam pipe (may not be an issue)
- Non-scaling FFAG
 - advantages
 - rf acceleration : constant rf frequency (high frequency & high field)
 - small beam pipe: small momentum compaction
 - problems (issues)
 - resonance crossing
 - time of flight (path length) for large beam amplitude : cascade rings

Scaling FFAG with HNJ(harmonic number jump) Acceleration

- Scaling FFAG + HNJ acceleration
 - Harmonic Number Jump(HNJ) acceleration
 - const. rf frequency -> high frequency & high field
 - Higher frequency (200-400MHz) rf cavity: good matching ->
 Phase Rotation & non-scaling FFAG
- Scaling FFAG with HNJ for low energy (5-10GeV) muon ring as an injector of nonscaling FFAG
- Scaling FFAG with HNJ for high energy (10-20GeV) ring

HNJ Acceleration

Revolution period for n-th turn $\left(\frac{T_n}{T_n}\right) = \left(\frac{C_n/v_n}{C_n/v_n}\right)$

$$\left(\frac{T_n}{T_1}\right) = \left(\frac{C_n / v_n}{C_1 / v_1}\right)$$

C: circumference, v: particle velocity

$$\frac{C_n}{C_1} = \left(\frac{p_n}{p_1}\right)^{\frac{1}{k+1}}$$

 $Tn - Tn - I = Trf \times m$

- - When k increases, or ring size decreases,
 - No. of turns decreases.
 - Energy gain/turn increases.
 - Need optimization!

$$\frac{C_n}{C_1} = \frac{h_n}{h_1}, \quad p_n = p_1 \left(\frac{h_n}{h_1}\right)^{k+1}, h_n = h_1 + n \times m$$

Issues of HNJ

- Phase acceptance
 - Smaller for HNJ cf. synchronized acceleration
 - Because energy gain/turn is so large for HNJ that phase slip/turn should be 2π . If stable phase is away from $\pi/2$, phase slip/turn should be much less than 2π .
- Non-linear source dynamic aperture problems in longitudinal direction
 - Sinusoidal rf field contains non-linear components.
 - Synchroton tune is high enough to see nonlinear resonances. mOs=n

5-10GeV scaling FFAG spiral sector - design example

- Ring parameters
 - r=40m
 - N=32cells
 - spiral angle: 74degree
 - Bmax ~2.IT (p.f.=0.4)
 - k=38
 - Orbit excursion
 - 71.7cm
 - Beam size(half, dp/p=0.03) at IOGeV
 - H: 4.3cm+3.0cm=7.3cm,V=5.2cm @s.s.
 - H: 5.2cm+3.6cm=9.3cm,V=6.9cm @magnet

Spiral FFAG 5-I0GeV

Parameters

- f r=40m
- k=38
- rf parameters
 - h=320
 - **-** *f*=400MHz
 - $fai_s=2 \pi /3$
 - 18.8MV/m:4-cell cavity

Spiral FFAG 5-10GeV

- Lattice
 - almost satisfied but more optimaization is needed.
 - k-value:lower, Bmax:lower, packing factor, circumference etc.
- HNJ acceleration
 - seems to have enough acceptance
 - frequency of rf cavity
 - 400MHz --->200MHz (depends on lattice design)
 - No. of turns: should be larger >10 turns (now 7turns)
 - reduce rf voltage 18.8MV/m -> 15MV/m
 - Increase ring radius and reduce k-value

Summary

• Three projects on scaling FFAGs are in construction/commissioning phase. All of these projects will be completed in JPY2007.

	Beam	Site	
FFAGs for ADSR	proton	KURRI	- JPY2007 (only for FFAGs)
FFAG-ERIT	proton	KURRI	- JPY2007
PRISM-FFAG	muon	Osaka U.	- JPY2007

• Scaling FFAG with HNJ acceleration for muons looks looks like good. But more tracking study and hardware R&Ds are needed.