Non-Scaling Triplet FFAG Lattices for the Electron Demonstration Ring and Proton acceleration for the AGS upgrade

CONTENT:

Electron Demonstration Ring: dp/p = +/-50%

- **Assumptions and Goals for the Electron Demonstration Ring.**
- **Goldowing directives from the BNL workshop: (symmetric parabola)**
- **Basic lattice properties.**
- **Courant-Snyder functions dependence on momentum.**
- **Proton Non-Scaling Design:**
 - Momentum Dependence of the lattice functions.
 - □ Larger orbit offsets during acceleration.

Electron Demonstration Ring: Assumptions and Goals

- **Energy: acceleration from 10 MeV to 20 MeV.**
- **Dimensions: Small ring: circumference ~12-15 meters.**
- **Scaling factor from Muon ~300 meter ring to 15 m is about 20:**
 - \Box C~12-15 m, magnetic field 4T/20 = 0.02 T, dipole length 1m/20 = 5 cm, ...
- □ Momentum Acceptance dp/p~+-50%
- □ Horizontal and vertical betatron tunes in the cell to be within 0.1 $< v_{x,v} < 0.4$.
- Path Length dependence on momentum is expected to be parabolic and the central energy needs to be close to the transition gamma γ_t.
- The RF cavity required drift space should be of the order of 10 cm.
- Optimize the magnets sizes and drift lengths.

What is the SCALING FFAG?

MURA-KRS-6 November 12, 1954 K. R. Symon: The FFAG SYNCHROTRON – MARK I

The minimum emittance lattice:

- The minimum emittance lattice requires reduction of the function H:
 - The normalized dispersion amplitude corresponds to the $\langle H \rangle^{1/2}$
 - Conditions are for the minimum of the betatron function β_x and dispersion function D_x to have small values at the middle of the dipole (combined function dipole makes it even smaller).

$$\beta_{\min} = Ld/2\sqrt{15}$$

 $D_{\min} = \theta * Ld/24$

Scaling or non-scaling FFAG, Minimum emittance lattice or FODO?

FODO or minimum emittance lattice?

- \Box For the same magnet properties larger circumference and larger X_{co}.
- □ For the same dispersion [$\Delta x=D_x*dp/p$] and the same magnet smaller field and larger circumference.
- □ The FODO has larger available free space.

Normalized Dispersion in the Basic Cell During Acceleration

Non Scaling FFAG-Path Length Difference Dependence on Momentum

BNL workshop produced 13m circumference Electron Demonstration non-scaling FFAG

Electron Demonstration Ring Central Energy 16 MeV

Electron Demostration ring Central Energy 150 MeV

Circumference 12 m

Circumference 12.5 m

Electron Demonstration Ring non-scaling FFAG

Maximum of the betatron functions during acceleration

Maximum of the closed orbits during acceleration

Betatron Function During Acceleration

Tracking at the central energy With COSY

The Minimum emittance non-scaling FFAG

Central momentum orbit through the basic cell

The Minimum emittance non-scaling FFAG

Betatron tunes vs. energy [eRHIC 1277m]

Momentum Compaction vs. Energy - eRHIC 1277m

Energetics of the RF system

For 6.25×10^{12} muons the total charge is 1μ C. Assuming a factor of 2 voltage drop the initial stored energy in the RF cavities is

$$U = 10 \text{GV} \times 1 \mu \text{C} \times \frac{4}{3} = 13 \text{kJ}$$

The stored energy is related to the voltage and impedance by

$$U = \frac{V^2}{2\omega_{rf}\left(\frac{R}{Q}\right)}$$

Taking a total voltage of 500 MV and $\omega_{rf} = 2\pi \times 200$ MHz one obtains (R/Q) = 7.6 k Ω .

The simulations used this impedance and V = 600 MV so the voltage dropped to 400 MV at the end of the cycle.

Taking 10 MV per cavity the requisite R/Q per cavity is 126Ω . The stored energy per cavity is 300 J.

For E = 10 MV/m the volume is $0.7m^3$.

With 60 cavities some extra straight sections may be required but, since $10 \text{ GeV} \gg 106 \text{ MeV} = m_{\mu}c^2$, the straights will have a negligible effect on dT/dE.

References

 N. Holtkamp, D. Finley eds., "A feasibility study of a neutrino source based on a muon storage ring", FNAL 2000.

RF considerations for FFAG rings M. Blaskiewicz, BNL

660 ns lattice from D. Troojevic and 900 ns lattice from E. Courant. Assume negligible energy input to the RF system during acceleration[1] 1-D update equations are

$$\tau_{n+1} = \tau_n + T(E_n) \tag{1}$$

$$\left(\frac{R}{Q}\right)I(t) = \frac{1}{\omega_{rf}}\frac{dV(t)}{dt} + \omega_{rf}\int_{0}^{t}dt_{1}V(t_{1})$$
(2)

$$E_{n+1} = E_n + qV(\tau_{n+1})$$
(3)

I(t) smoothed by 0.5 ps. V(t) updated with $\Delta t = 0.15$ ps.

20 turn acceleration, 0.2 eV-s, 660 ns lattice

Conclusions:

- Electron Demonstration ring is becoming a reality.
- There are many different studies going at the same time and all reports are very encouraging [J.S. Berg, M. Blaskiewicz, E.D. Courant, M. Craddock, A. Garren, C. Johnstone, E. Keil, S. Koscielniak, A. G. Ruggiero, and A. Sessler,].
- More detail studies of six dimensional simulations during acceleration are the next step and there are available tools.
- We have shown that the non-scaling triplet FFAG's can accelerate muons, protons, heavy ions, electrons.