

R&D Program and Budget

Michael S. Zisman CENTER FOR BEAM PHYSICS

Neutrino Factory and Muon Collider Collaboration Meeting–Shelter Island May 9, 2002

- Introduction
- Recent R&D accomplishments
- Present R&D activities
- Budget
- Summary

<u>Entroduction</u>

- MC has made good technical progress in the past year
 - despite weaker funding compared with previous years
- We went through B&B process and had very positive MUTAC review
- Hardware development continues to be major focus (and major expense) for MC
 - simulations are also important (and comparatively cheap)
 - Study-II did us a lot of good at MUTAC and Snowmass
 - ring cooler studies and cost optimization changes (e.g., RF phase rotation system) have potential for improving design concepts
 - gaining a better understanding of performance and cost of FFAG scheme will also be useful
- Here, I will summarize recent progress, describe current activities, and indicate some of the work to be done in future years
 - budget matters will also be covered

- Much was accomplished in the past few years, despite decreased funding
- first round of target tests completed (C rod, Hg jet)
- first rf cavity tested (reached 24 MV/m)
- completed Study-II (6x performance increase, 25% cost reduction)
- began pressure tests on absorber windows
- began 201 MHz SCRF cavity design

- Open-cell cavity reached 24 MV/m accelerating gradient (53 MV/m peak surface field) (Moretti, Wu)
 - note that cavity is only partially in the magnetic field, making interpretation of results more difficult

• Evidence for "rings" on window (images of irises)

— also see damage on irises

- Dark currents found to be very large ($\propto E^{10}$) (Norem)
 - copper splashes appear on to window when solenoid field present

— overall behavior typical of many cavities (not understood in detail)

- Study-II permitted integrated look at an entire Neutrino Factory
 - compared with earlier Study, performance increased 6x, at estimated cost of 75%
 - cost decrease due to lower energy (20 GeV), eliminating one RLA
- Engineering and cost estimate give credibility to Neutrino Factory concept

🔶 dt

t t

6.0000

4.0000

- Absorber work focused initially on thin window fabrication
 - windows as thin as 125 μ m machined from solid Al (Summers)
 - tapered profile gives good compromise between strength and thickness requirements

0.0000

-2.0000,00000

Prototype window measurements

2.0000

r (in.)

- we are also breaking them (on purpose) at NIU (Cummings)
 - $\circ~125~\mu{\rm m}$ window breaks at 44 psi (3 atm), 340 $\mu{\rm m}$ window at 120 psi (8 atm)
 - goal is to verify FEA calculations (LH₂ safety requirement)
 - so far, so good

Window outfitted with strain gauges

Rupture of 340 μ m window

- Work on 201 MHz SCRF cavity for the acceleration system made good progress (Padamsee, Hartill)
 - cavity fabrication done in collaboration with CERN
 - test facility being set up at Cornell

- MUTAC and MCOG made a number of recommendations to MC based on October review
 - specifics discussed in the context of our current activities
- General MUTAC comments
 - liked Study-II work, but suggested that we now move on to other activities
 - acknowledged that our R&D support level is insufficient and recommended an increase, especially for hardware development
 - encouraged international R&D approach, especially for MICE
 - suggested we thoroughly understand ideas from other groups, e.g., CERN scheme and Japanese FFAG scheme
 - felt that too much emphasis on Muon Collider was premature
 - but, encouraged "common" work on emittance exchange
 - pointed out the need for realistic planning and priorities

- Our actions:
 - no "Study-III" planned this year
 - simulation of CERN scheme under way (as MICE activity)
 - but no collaboration with Japan on FFAGs planned this year
 - reflects lack of personnel, not lack of interest
 - emphasizing Neutrino Factory and "common" aspects over Colliderspecific
 - long-range planning should be a focus here, where MC meets together as a whole
 - sadly, budget restrictions make these meetings a too-rare occurrence

- Targetry
 - E951 has produced impressive results
 - open questions for Hg jet: injection into $\approx\!20$ T field and nonlinear jet dynamics at full proton intensity
 - recommend considering lower field target solenoid for cost and technical risk reduction
 - questioned whether priority of experiments justifies expense
 - MCOG advised that we continue experiments as planned in view of their importance to all muon-related HEP experimental efforts
- Our actions:
 - designing test magnet to permit experimental study of its effects
 - designing jet system capable of required 20–30 m/s velocity
 - copy from Lac Léman?
 - continuing simulation program to predict and interpret effects

• Concept for test target solenoid (5, 10, 14.5 T capability; ≈\$1.5M)

	Units	Case#1	Case #2	Case #3
Peak on-axis field	Т	5.0	10.0	14.5
No. of 0.54 MVA power supplies		1	4	4
Mode of ganging supplies		none	2 x 2	2 x 2
Initial temperature	К	84	74	30
Number of turns utilized		1200	1200	1800
Charge time	sec	7.2	6.3	15.3
Temperature rise at end of pulse	К	5.8	21.7	48.3
Cumulative heating at end of pulse	MJ	2.7	9.1	15.2

- · MUCOOL
 - ionization cooling remains primary R&D issue for MC
 - \Rightarrow development and integration of hardware
 - complete fabrication of absorbers for filling tests and, later, beam tests
 - complete MTA as test bed for absorbers and 201 MHz rf cavities
- Our actions:
 - pushing ahead on MTA construction
 - ongoing plans to develop and integrate hardware (rf cavity, absorber, solenoids) in MTA
 - $\circ\,$ work on absorbers and instrumentation slowed in favor of MTA
 - developing long-range plans based on (hopefully) realistic funding levels

MUCOOL Test Area (MTA)

Original area

Present area

What it will look like when completed

- Normal conducting rf
 - need to understand source of dark currents
 - take dark current issue seriously
 - some breakdown tests can be done DC at Cornell
 - cleanliness and careful processing will help (as for SCRF)
 - make contact with others doing high-gradient NCRF R&D
 - evaluate trade-offs of 805 and 201 MHz R&D
 - but, do not go down too many parallel paths
 - need to study problems with actual hardware (not just simulations)
 - quantify running scenario in terms of acceptable breakdown rate

• Our actions:

 805 MHz program now focusing on pillbox cavity having replaceable windows (or grids) (Li, Rimmer)

- dark current results for open-cell cavity are documented
 - MC note 235 prepared
 - workshop planned at Fermilab this fall
 - include experts from NC and SC rf communities
- continuing dark current studies in Lab G with pillbox cavity (fits in bore of Lab G solenoid)
 - will analyze energy spectrum of electrons

- Plan to study cleaning and coating techniques
 - initial experiments will make use of replaceable windows of pillbox cavity

• 201 MHz rf cavity design is well along (Rimmer, Ladran)

— options for both stepped Be windows and grids are available

detail views of foil and grid assemblies

- \cdot LH₂ absorbers
 - work is advancing
 - encourage optical monitoring of window deformation
 - investigate quench effects on Al window (calculations and experiments)
 - though not stated, this applies to rf cavity Be windows as well (initial estimates look okay)

- Our actions:
 - tests of windows will continue
 - hydrogen safety considerations being evaluated
 - alternative approaches with fewer safety issues will also be explored

• Test dewar for convection cooled absorber at KEK (Ishimoto)

 Plan to develop absorber compatible with bore of existing Lab G solenoid (Kaplan, Cummings Black)

- Solenoids
 - novel problems connected with mechanical engineering and operational issues
 - recommend failure analysis at an early stage, especially for adjacent, opposite-polarity solenoids
- Our actions:
 - initial evaluation of failure scenarios will begin (in context of MICE)
 - quench effects on nearby components will be assessed
 - design with integrated absorber being evaluated
 - Study-II front-end simulations will be updated to reflect latest thinking
 - make this our "standard performance metric" for now

- Concept of reduced size magnet with integral absorber (Green)
 - should be easier and cheaper

- Comparison of parameters
 - "A" magnet changes look encouraging; "B" magnet changes likely to interfere with rf cavity clearance

Parameter	New	Old
Maximum Space for the Cavity (mm)	1968	1966
Number of Cavities per Cooling Cell	4	4
A Magnet Cryostat Length (mm)	356	283
B Magnet Cryostat Length (mm)	782	784
Coil Inside Diameter of the A Magnet (mm)	518	788
Coil Inside Diameter of the B Magnet (mm)	1313	1480
Warm Aperture Diameter of the A Magnet (mm)	400	650
Warm Aperture Diameter of the B Magnet (mm)	1236	1390
Maximum Diameter of Absorber (mm)	676	650
Maximum Cell Stored Energy (MJ)	5.7	13.2
A Coil Maximum Current Density (A mm ⁻²)	119	119
B Coil Maximum Current Density (A mm ⁻²)	96	96
Maximum Design Warm to Cold Force (MN)	0.316	0.774
Maximum Force Pushing A Coils Apart (MN)	0.696	3.224

- Superconducting rf
 - focus on achieving gradient, Q, mechanical stability
 - explore cavity cooling schemes
 - develop economical structures
 - develop designs for ancillary items (input coupler, HOM coupler, tuner)

• Our actions:

- fabricated test cavity (at CERN) and test facilities (at Cornell)
- doing mechanical design to stiffen cavity
- looking into spinning technique to reduce fabrication costs
- designs for ancillary devices will be based on existing experience, e.g., KEKB

• 200 MHz SCRF cavity at Cornell (with its smaller siblings)

- Simulations
 - 6D theoretical development complimented
 - encouraged study of ring coolers, including injection/extraction
 - encouraged analyses with errors included
- Our actions:
 - continue to support theory effort
 - need to evaluate whether resource levels adequate
 - created separate group to focus on ring coolers (R. Raja)
 - bringing nonlinear dynamics experts into the fray (via ICAR+NSF)

- Emittance exchange/ring coolers
 - important due to potentially significant payoff (Neutrino Factory and/or Collider)
 - keep creative juices flowing (rings, snakes, helical coolers,...)
 - nonlinearities and end fields are important
 - highest priority: solve injection/extraction problems and develop technically feasible design
- Our actions:
 - set up dedicated (and creative) group, with weekly meetings
 - assessing fields of realistic magnets; tools to evaluate effects available
 - idea for injection/extraction being studied (Palmer, Reginato)

Present R&D Activities

- Ring cooler permits 6D cooling...on paper
 - based on wedge absorbers in dispersive regions of a ring

 Performance looks interesting...if we can figure out how to inject and extract beam

Injected beam: Transverse emittance 1.21 cm Longitudinal emittance 42.6 cm 6D emittance 62.6 cm³.

The beam after 20 turns: Transverse emittance 0.80 cm Longitudinal emittance 2.3 cm 6D emittance 1.49 cm³ Transmission without decay 77.8% Transmission with decay 26.3% Merit factor 11.0

- Large aperture kicker concept proposed by Palmer and Reginato discussed at recent workshop at LBNL
 - concept appears feasible, but difficult to implement (\Rightarrow expensive)
 - issues:
 - power supplies (need many magnetic pulse compression systems to drive magnet)
 - tolerance of kicker (ferrite or Metglas) to lattice fields

- International activities
 - closer collaboration with Japanese group on FFAG approach desirable and feasible
 - technical evaluation of different design concepts with common simulation tools would be appropriate goal
- Our actions:
 - evaluation of CERN scheme under way
 - Japanese scheme not yet evaluated
 - must identify effort to look at FFAG scheme

• FY02 MC budget is

Institution	COOLING	TARGETRY	COLLIDER	EFFORT	RESERVE	TOTAL (\$K)
BNL		825				825
FNAL	815					815
LBNL	470				111	581
ANL				215		215
IIT				83		83
Mississippi	50					50
Princeton		75				75
UCB			60	30		90
UCLA	25		50			75
ORNL						0
JLab						0
TOTAL (\$K)	1360	900	110	328	111	2809

^aIncludes beam simulation and diagnostics effort.

- Also: salary support from BNL, FNAL, LBNL; support from NSF (mainly Cornell) of \$1M; and support from ICAR (~15 FTE)
 - not clear NSF support will continue beyond this year

- In FY02, the MC budget was again reduced
 - \$2.809M/\$3.180M = 0.88 (\Rightarrow 12% cut!)

Year	DOE-base	DOE-MC	TOTAL
	(\$M)	(\$M)	(\$M)
FY99	2.8	2.2	5.0
FY00	3.3	4.7	8.0
FY01	3.0	3.2	6.2
FY02	3.0	2.8	5.8
FY03 ^a	<mark>2.1</mark>	<mark>1.4</mark>	<mark>3.5</mark>
^a Present g	uidance from DO	E.	

- We need increased funds to build components
- Severe cut in FY03 is surprising and clearly inappropriate in view of
 - considerable technical progress, a good MUTAC review, support from MCOG, and a favorable recommendation from HEPAP

"We support the decision to concentrate on the development of intense neutrino sources, and recommend continued R&D near the present level of \$8M per year. This level of effort is well below what is required to make an aggressive attack on all of the technological problems on the path to a neutrino factory."

- Budget issues
 - MC has no formal mechanism for giving DOE input on future funding needs
 - we do not submit FWPs
 - we do not get a DOE-HEP review as a "program"
 - presently, we simply wait until DOE "gives us a number"
- Rapidly decreasing budgets are unlikely to convey to Lab management (or us) the impression that this is a worthwhile activity

- We are in the process of developing detailed out-year budgets now
 - to carry out proposed program in a reasonable time frame will require at least \$8M per year
- Since budgets are determined annually based on specific tasks, the values that follow represent only a "typical" split of the funding
 - base program effort

BNL	\$1.2M
FNAL	\$1.8M
LBNL	<u>\$0.5M</u>
TOTAL	\$3.5M

- MC funding

MUCOOL	\$1.6M
Targetry	\$1.2M
Simulations/ring coolers	\$0.8M
MICE	<u>\$0.9M</u>
TOTAL	\$4.5M

— possible "extras"

Acceleration (if not NSF)	\$1.0M
MBK development	\$2.0M
MICE component fab	\$3.0M
AGS primary operation	\$1.0M

- FY03 desired activities
 - begin target-solenoid fabrication
 - continue beam tests at AGS
 - continue Be window development and launch grid development
 - continue dark current studies
 - begin fab of high-power 201-MHz NCRF cavity and test solenoid
 - begin LH₂ absorber tests (requires completing MTA)
 - develop formal proposal for MICE (international effort)
 - study alternative design approaches (e.g., Japanese FFAG scheme)
- Proposed FY03 budget will not allow most of this to proceed
 - to say nothing of eliminating AGS HEP operation

- Strawman priorities (based on budget guidance)
 - Targetry
 - initiate target solenoid coil fabrication (only inner coils)
 - continue target simulations (no beam tests)
 - MUCOOL
 - complete MTA development (no components to test)
 - carry out cavity and dark current tests at 805 MHz
 - complete 201-MHz cavity design (no fabrication; no solenoid)
 - continue absorber window tests (no complete absorber tested)
 - prepare MICE proposal
 - Simulations
 - study emittance exchange and ring cooler design; look at FFAG scheme (consider joint workshop later this year)

- Out-year planned activities (focus on hardware...that's where the money is)
 - Targetry
 - fabricate and test Hg-jet system at ≈20 m/s jet velocity
 - fabricate 15 T magnet and test with AGS beam
 - upgrade AGS extracted beam to reach 16 Tp on target
 - requires 9 shifts of beam development
 - test integrated system at full beam intensity
 - continue target simulation program to use in interpreting experimental results
 - operate AGS for E951
 - requires 10 shifts for target tests

Elimination of AGS running for HEP in FY03 delays our program by 1 year

- MUCOOL
 - fabricate and test 201 MHz high-gradient cavity (17 MV/m)
 - develop, and test at high gradient, reliable cavity termination system (Be windows or Al grid tubes) at 201 MHz
 - characterize dark current effects; develop and test mitigation schemes (cavity surface preparation, coatings)
 - \circ fabricate and test LH_2 absorbers (both convection-cooled and forced-flow types) with all safety aspects
 - fabricate and test solenoid "coupling coil" at full field
 - carry out integration tests of all components operating together (cavity, absorber, solenoid)
 - provide transfer line for 400 MeV p beam to MTA and test integrated system with beam ("blast test")
 - develop low duty factor 12 MW 201-MHz multi-beam klystron (MBK) in collaboration with industry

- MICE

- evaluate, and develop if needed, solid absorber (e.g., LiH) as fallback or start-up alternative
- design and fabricate required beamline components for which the U.S. team is responsible (201 MHz rf cavities, absorber, solenoid coils, dark current and timing diagnostics, 5 MW rf power source)
 - final list of responsibilities will be generated as part of proposal preparation process
- ship all components to experimental site and set up systems for experiment
- participate in simulation studies of final configuration
- participate in data taking and data analysis for experiments

- Acceleration (note: not clear that NSF will continue this program)
 - develop full prototype of 201 MHz SCRF system (cavity, tuner, coupler, cryostat) and suitable low-level controls
 - $\circ\,$ operate at high gradient (${\approx}17$ MV/m) with acceptable quench performance
 - develop high-duty factor version of 201-MHz MBK in collaboration with industry
 - build prototypes of challenging RLA magnets (e.g., splitters and recombiners, well-shielded solenoids)
 - measure field quality and validate with tracking studies
 - demonstrate operation of SCRF in vicinity of solenoids
 - develop and cost an FFAG acceleration scenario (in collaboration with Japanese group)

- Storage ring
 - develop prototypes of challenging magnets
 - measure field quality and validate with tracking studies
- Ring coolers
 - develop prototypes of challenging magnets
 - measure field quality and validate with tracking studies
 - develop and test wedge absorbers

- MC program generally in excellent accord with recommendations from MUTAC (or, maybe, vice versa)
 - strongest support for MUCOOL (largest share of budget)
 - more emphasis on emittance exchange
- We are making good technical progress on all fronts
- Process of developing long-range priorities and plans has begun and will continue here
- Strong enthusiasm in MC to continue to build upon present technical progress
 - but decreasing funding continues to be an impediment
- We (along with MCOG) have presented our case to DOE this week