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Introduction

There 1s now compelling evidence that neutrinos have mass, and neutrinos of one flavor
can transform themselves into neutrinos of a different flavor — neutrino oscillations.
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Two-Flavor Mixing

1. Atmospheric & Solar neutrino results are usually presented within
the framework of two-flavor mixing;:

Vo | ( cosb  smb ) v,
Vg | —sin® cosd 2
2. Flavor transition probability for neutrinos with energy E (GeV)

traversing a baseline L (km) :

2
P(v. —>v_ )=1-sin’20sin*(1.27 An}; =)

Oscillation amplitude: sin?20
Oscillation frequency determined by Am? = m,? - m,?



Atmospheric Neutrinos

Super—Kamiokande Fit Results
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Solar Neutrinos

SNO Global Fit Results
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Three — Flavor Mixing - 1

If the Solar & Atmospheric neutrino results are both due to neutrino oscillations
there must be at least 3 mass eigenstates .... Otherwise there cannot be two
different mass splittings.

Within the framework of 3-flavor mixing, the 3 known flavor eigenstates (V,, Vi

V) are related to 3 neutrino mass eigenstates (V,, V,, V) :

UMNS




Three — Flavor Mixing - 2

Within the framework of 3-flavor mixing ALL of the physics 1s encapsulated within
.2
1

the 3 x 3 mixing matrix Uy, , and two independent Am i

In analogy with the CKM matrix, U, s can be parameterized using 3 mixing angles
(0,,,0,;,0,;) and one complex phase (0) :

C15C03 51,013 Si;e™
-51,C5; | C12Cy; | 55305

-C1585355€% -51,Cp3 55 €%
S 1253 -C12853 CyiCis
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Three — Flavor Mixing — Quarks vs Leptons

The first theorist guess was that the U, matrix should be similar to the CKM matrix.

However sin“20 > 0.9 and SiIlZZGSOL ~ (0.87. Therefore :

large large  small/tiny ? ~1  small t%ny

large large  large srpall ~1 tny

large large  large tiny  tmy  ~Il
UMNS VCKM

Note that the size of the small/tiny U, element is governed by 0. We think we
know that sin’20 , < 0.1 (CHOOZ reactor v, disappearance limit)

Establishing the size $in20,, a vital goal for future accelerator-based neutrino

oscillation experiments ... this will determine the size of the one completely unknown

element of the mixing matrix.




From Three — Flavor Mixing to Oscillations

We take as the two independent Amij2

Am

We know that ;
|Am

P 2 2 = 2
atm AIn32 and AInsol — AIn21

ol 01096V < [Am,,2 > 107 eV?

The full expressions for the flavor transition probabilities are messy but, since
|[Am,,? | >>|Am,,?| we can gain some insight by neglecting terms driven by Am, 2.

For neutrinos of energy E propagating a distance L in vacuum :

P(v, & v,) = sin?0,;sin°20,; sin*(1.267 Am;,*> L / E)
P(v, & Vv,) = cos? 0,,sin’20,; sin?(1.267 Am;,”>L / E)
P(v, & v,) = sin*20,; cos*0,; sin*(1.267 Am;,)* L/ E)




Matter Effects

In vacuum the oscillation probabilities depend on |[Am;,? | but not on
the sign of Ams,?.

In matter electron neutrinos can forward-elastic scatter off the electrons,
an additional interaction that modifies the transition probabilities for

transitions involving a V.. The modification depends on the sign of
Am322 and can be exploited to determine the pattern of neutrino masses:

Am,? : 3

sol

2
|Am 2| OR |Amatm |

atm

3 1 [Amg |

sol




What is Known

There are at least three flavors participating in neutrino
oscillations.

sin?20,; ~1 (= 0.9 at 90% CL)

Amy2 ~ 2 x 103 eV?

. Am, 2 ~ 5x10°eV? (if LMA confirmed)
sin’20,, ~ 0.87 (if LMA confirmed)

sin220,; < 0(0.1)
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What is NOT Known I

Does three-flavor mixing provide the right framework or are there
contributions from: additional (sterile) neutrinos, neutrino decay,
CPT-Violation, extra dimensions, ...?

[s sin?20,, small or tiny (or zero) ?

Is 0 non-zero (Is there CP-violation 1n the lepton sector, and
does it contribute significantly to Baryogenesis via Leptogenesis) ?

What is the sign of Am,,? (pattern of neutrino masses) ?

[s sin?20,; maximal (=1) ?



Beam Properties at a Neutrino Factory

ur—etvev, = 50% v, ,50% v
w—>evev, — 50%v,,50%v,

It x=2E,/m, 0 1s the angle between the neutrino & muon spin,

and P 1s the muon polarization, in the muon rest-frame :

d’N 1 _
V, : ~ —— [2x3(3-2x) + 2x2 (1-2x) P cos 0]
H dx dcos 6 4

d°N 1 ) — )
Vo deos g " A [12x2(1-x) + 12x% (1-x) P cos 0]
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Muon Neutrinos ata 13

Neutrino Factory

MW-scale proton driver can produce
Neutrino Superbeams (e.g. SNuMI =
4 x NuMI) or a Neutrino Factory
providing ~10?° decays/year.

Muon neutrino flux at a 20 GeV NuFact
comparable to Superbeam flux. At higher
energies NuFact event rates ~E>.

The neutrino energy spectrum has NO HIGH
ENERGY TAIL at a NuFact ... a crucial
advantage since neutral current backgrounds
to v, — v, oscillations come from this tail

— which limits the sensitivity of Superbeams.



Electron Neutrinos at a Neutrino Factory 14

The real reason we want a Neutrino Factory 1s that we need a clean
source of electron-neutrinos. These are only present in a Superbeam
as a small (annoying) contamination.

We will see for v, — vy, oscillations that (1) to fully exploit matter
effects (— baseline of several x 1000 km, and (i1) to suppress back-
grounds to wrong-sign muon signal events, we want electron neutrinos

with energies O(10 GeV).

To search for v, — V. oscillations we also want electron neutrinos
with energies of at least O(10 GeV) so we are well above the

v CC threshold.

This leads us to consider Neutrino Factories with energies of 20 GeV
Or more.
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Oscillation Measurements at a
Neutrino Factory

Simulated distributions for a 10kt Lar detector
at L = 7400 km from a 30 GeV nu-factory with

There 1s a wealth of information that
102! 1™ decays.

can be used at a neutrino factory.
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Wrong-Sign Muons 16

v, — v, oscillations at a neutrino factory result in the appearance
of a “wrong-sign” muon ... one with opposite charge to those
stored 1n the ring:

CC

" —>e v, v, = ut

ol

v =
v _
“cc!vl

Backgrounds to the detection of a wrong-sign muon are expected

to be at the 10* level = v, — v oscillations with amplitudes as
small as O(10-#) can be measured !
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Muon Threshold L7

To measure wrong-sign muons with back-
ground fractions as low as O(10-%) we
need to impose a threshold on the muon
energy which depends on detector tech-
nology. For a magnetized 1ron/scintillator
detector E_.. ~4 GeV.

With this threshold, to obtain reasonable
muon detection efficiency we need
neutrinos with energies =10 GeV

In practice this means the stored muons
must have energies of at least ~20 GeV.

It 1s worth exploring reducing the
Neutrino Factory energy by a couple of
GeV, but we are losing ground fast !



Sinzzﬁﬁ Reach - 1

In a long baseline experiment the v, <> v, oscillation probability is
approximately proportional to the amplitude parameter sin’20 , :

P(v, & v,) = sin?0,;sin°20; sin*(1.267 Am,;,*L / E)
v
~ 0.5

It is useful to define the sin’20,, reach for a given experiment as the
value of sin“20; for which a v, < v, signal would be observed 3o
above background. If the expected background i1s less than one event,

we define the reach as the value of sin?20,; that yields 10 signal events.

From the CHOOZ reactor v, disappearance search we know that at
90% CL: sin?26,; < O(0.1)

In the next 10 years Superbeam experiments are expected to achieve
a sin?20,, reach ~ O(0.01)

18



sin? 29,5 yielding 10 i~ evts/10" u* Decoys
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At a Nu Factory 10!° decays yields
comparable reach to 5 yrs running
at the 0.77 MW JHF Superbeam.

With 2x102° decays/yr, a Nu-
Factory does almost X 100 better.
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When do Superbeams Run Out of Steam ? 20

There are various first-generation superbeam ideas (JHF, NuMI off-axis,
BNL study, ...) all of which seem to yield similar sin’26,, sensitivities.

To improve further we must increase N = beam flux X detector mass.
We are background limited ... so sensitivity improves v/ N.

How much does it cost to improve a modest X 5 beyond JHF — SK ?

With P-Driver Upgrade Without P-Driver Upgrade
Detector Mass Cost Mass Cost
Plastic/RPC 100 Mt 200 M$ 500 Mt 1.0 BS
4.5mm steel/sc 75 Mt 325 M$ 375 Mt 1.6 B$
Liq. Argon 25 Mt 500 M$ 125 Mt 2.5 BS$
Water C 500 Mt 425 M$ 2500 Mt 2.1 BS
Liqg. Sc 100 Mt 150 M$ 750 Mt 0.8 BS

None of these costs should be taken very seriously ... & should not be used to compare detector
choices (yet). The Lig. Argon case could be much cheaper if new detector technology was
successfully developed.



Sin229ﬁ Reach - 3

dmZ, =3.5x107° eV?

1 r T T | T

| b | | Neutrino Factory experiments
107 ¢ 1 | are so sensitive that the signal

_ rates depend upon the sub-
102 £ 0.77 MW JHF — SuperK = leading |Am212| scale.

:_ NuFact L =2900 km

At large |Am,,?| and very
small sin’20, the sub-leading
scale begins to dominate !
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L . 22
CP-Violation & the pattern on neutrino masses - 1

CP Violation requires contributions from both leading & sub-leading
Am? scales.

If the sub-leading scale (Am,,?) & the associated oscillation amplitude
are large enough (— LMA) then CP violation might be observable in
long-baseline experiments !

The signature for CP violation would be an inequality between
P(v, & v )and P(V, <> Vv,) — Measure wrong-sign muon rates
for W™ and 1" running.

If the baseline 1s a few xX1000 km, matter effects can also produce an
inequality between P(V, <> VM) and P(V, <> v, ) which depends upon
the sign of Am,,?> — the pattern of neutrino masses.



The pattern on neutrino masses
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+tve Am,,? gives larger rate &
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CP-Violation & the pattern on neutrino masses - 3
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CP-Violation — Detailed Fitting
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Detailed fits have shown that good
sensitivity is maintained provided
[Am, | > 2 x 107 eV2 - over
the entire LMA region !
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CP-Violation — Detailed Fitting
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For a single baseline we
expect a strong
correlation between the
extracted values of

sin20,; and 9.

However, the correlation
can reduced with two (or

more) baselines —
motivation for more than
two straight sections.



Potential for Sur

hrises - LSND

1 =

- Blue is LSND

| 90% Conf.
| Yellow, 99%

LSND see evidence forv, & v,

oscillations with a |[Am?| scale
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[Amy g\p? 3> [Am g > [Amgg, 2|

If confirmed by MiniBooNE, then

we have three mass-splitting scales

which cannot be accommodated

Within a framework in which there

are only three mass eigenstates.

The 3-flavor mixing framework
would have to be modified —» BIG

DISCOVERY !



CPT Violation 28

The “LSND” problem could be solved if CPT is violated so that the neutrino mass
eigenstates are different from the antineutrino mass eigenstates:

Barenboim, Borissov, Lykken,; hep-ph/0201080

solar atmospheric

PR N

E

S

2

m; I

3

LSND

I

atmospheric

Legend:

<=
(H N
<=l <

x10° eV

2
atm

Am

Fit to SuperK Atmospheric Neutrino Data
(90, 95, & 99% CL regions)



Sterile Neutrinos

The “LSND” problem could be solved if there were more than three light neutrino

mass eigenstates > STERILE NEUTRINOS :

CC events / kt per 10% decays
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Searching for v, — V_ becomes
important = Neutrino Factory

CP Violation might be observed with
a low intensity Neutrino Factory ...
perhaps as low as 10'® decays / year !

In the LSND-confirmed scenario it
might even be possible to motivate a
learning Neutrino Factory with a
limited physics program delivering
only 107 decays / year !
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Summary — Important Points for Nu-Factory Design

1.

Solar neutrinos oscillate, and it 1s looking increasing like the
LMA solar solution — good news for Neutrino Factories

In general the neutrino oscillation physics goals require that
Neutrino Factories deliver > 10?0 useful muon decays / year
with energies > about 20 GeV — exciting physics program.

If MiniBooNE confirms LSND we might imagine a case for

a learning Neutrino Factory delivering only 108 decays / year.
In fact any big surprise might motivate a low intensity Neutrino
Factory ... we should be prepared for this scenario.

30
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Three — Flavor Mixing - 1 32

Within the framework of 3-flavor mixing, the 3 known flavor eigenstates (V,, vV, V,) are
related to 3 neutrino mass eigenstates (Vy, V,, V;) :

() - (3x3)(})

Let the 3 x 3 mixing matrix Uy,g have elements U;;. If a given neutrino beam has an

initial flavor v the time evolution of the beam 1s given by:
¥ (x,t) = explip,x} 2 U, exp{-iE t} v.
1

Since in practice neutrinos are always highly relativistic E. ~ p, + m;?/2p, and:

A%

W, (x,t) = explipy(x-t)} 2 Uy exp{-i (m?/2p,) t} v,



Three — Flavor Mixing - 2

At the point X = t (the central location of the beam at time t) = the baseline L :

¥, ()= L U, exp{-i (m?/2E) L} v,

1

The transition amplitude :

A(vy > vy) = 2 U*,_.

1

exp{-im;* (L/2E)) } Uy

1

Definine Am..2 = m.?- m.? the transition probability |A(V. — V. )|? =
g 1] 1 ] p Yy o B

P(v, > V) = 8yp - 4ZR(U*M Up; U, U*g ) sin2(Am;2 L/ 4E,)

1>]

+2 2 1(U*; Uy; Uy U* ) sin (Am;2 L/ 2E,))

1>J
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