

Mercury Target Issues and Development Program

Neutrino Factory and Muon Collider Collaboration Targetry R&D Meeting

Dec. 16, 2000

Brookhaven National Laboratory

Tandem Library, Bldg 901A

John Haines

Outline

- Comparison Between SNS and Neutrino Factory Target Requirements
- Key Issues and R&D implemented to address them
 - Removal of time-averaged power
 - Handling pulsed beam loads
 - Materials compatibility and irradiation damage
- Hg processing and storage of radioactive byproducts
- Comments on Safety Categorization and R&D for Neutrino Factory and Muon Collider

SNS Mercury Target Requirements

- 2 MW average proton beam power
- 1 GeV protons
- Pulse duration ~ 0.5 μs
- 60 Hz rep rate
- Resulting target loads
 - Energy deposition per pulse ~ 33 kJ
 - Peak time-averaged current on target 0.25 A/m²
 - Peak time-averaged power flux on target vessel ~ 600 MW/m³
 - Peak time-averaged power flux from vessel to Hg ~ 1 MW/m^2
 - Peak energy deposition in Hg ~ 800 MW/m³

Comparison of Heat Loads

SNS Experimental Facilities

Mercury Loop Flow Parameters @ 2 MW

- Power absorbed in Hg
- Nominal Operating Pressure
- Flow Rate
- V_{max} (In Window)
- Temperature
 - Inlet to target
 - Exit from target
- Total Hg Inventory
- Pump Power

Hg Process Loop

SNS Experimental Facilities

Key Issues for the SNS Mercury Target

- Steady state power handling
 - Cooling of target/enclosure window wettability
 - Hot spots in Hg caused by recirculation around flow baffles
- Thermal Shock
 - Pressure pulse loads on structural material
 - Effects on bulk Hg flow
- Radiation damage to structural materials
- Compatibility between Hg and other target system materials
- Demonstration of key systems:
 - Mercury loop operation
 - Remote handling

Some SNS Hg Target R&D Facilities, capabilities, and expertise might be directly applicable to neutrino factory

Mercury Target Development

SNS Experimental Facilities

Mercury Process Cell at TTF

SNS Experimental Facilities

Materials R&D

- An aggressive materials R&D program has been developed for Target Systems
 - Technical issues:
 - Radiation induced embrittlement by p and n fluxes
 - Effects of high He and H transmutation rates on properties
 - Thermal gradient mass transfer in Hg
 - Liquid metal embrittlement
 - Interactions of radiation effects and compatibility processes.
 - Facilities: LANSCE, SINQ, TIF, HFIR
 - Hg Loops and other test devices involving Hg have been built at ORNL.

Materials Qualification Tests

Test \ Item	Energy	Dose	Не	н	Hg	Thick	Stress	Fatigue
SNS	high	high	high	high	flow	\checkmark		
TIF 3- Beam	low	high	high	high				
TIF p-Beam	low	low			static*		?	
LANSCE	high	high	high	high		\checkmark		
SINQ	high	high	high	high		\checkmark		
HFIR	low	high	high			\checkmark		
TC Loop					flow	\checkmark		
LME Tensile					static			
LME Fatigue					static			\checkmark

Low flow rate upgrade may be possible *

Ö

Typical for SNS Possible relevance to SNS ?

Hg processing and handling of radioactive byproducts

- Mercury lasts the entire 40 year lifetime of SNS with no changeout required
 - "Burn-up" over 40 years is only ~ 0.1%
 - Most conversion is from one Hg isotope to another
 - Tritium production rate ~ 8 kCi/year
- No filtering required; tritium released from Hg to absorption system

Safety Issues for SNS Hg Target

- SNS Target Region is a a Hazard Category 2 Nuclear Facility
 - Inventory of certain radionuclides (primarily mercury isotopes) exceed thresholds
- Mercury releases that exceed the site boundary limits are only possible if the mercury is at elevated temperature
- Safety Class Systems required to avoid elevated temperatures
 - Target Protection System used to trip the proton beam for abnormal loop conditions (high temperature or low flow)
 - Safety Class fire protection
 - Combustion Control program
 - 2 hour fire wall
 - fire suppression system
- Additional Safety Significant Equipment needed to protect workers

SNS Experimental Facilities

SNS Experimental Facilities

DOE Safety Documentation Requirements Differ for Nuclear and Accelerator Facilities

- Accelerator Facilities: DOE Order 420.2 and related guidance
 - Preliminary Safety Assessment Document (PSAD) required for design stage
 - Independent review required
 - Approval authority with project management
 - Includes facilities integrally connected to accelerator
 - DOE approval of the Accelerator Safety Envelope required prior to commissioning and/or operations.
- Nuclear Facilities: DOE Order 420.1, 10 CFR 830, DOE Standards 3009, 1027, 1019-24, and others
 - Preliminary Safety Analysis Report (PSAR) required for nuclear facilities
 ... per DOE-STD-1027 this includes the SNS target and related facilities
 - Approval required before construction begins
 - DOE reviews and approves the PSAR
 - Approval of final SAR (FSAR) required for operation & commissioning

The Nuclear Facility Includes a Portion of the Target Building (1)

The Nuclear Facility Includes a Portion of the Target Building (4)

Section through target, monolith and neutron beam lines

PSAR Process Takes Significant Time & Resources, and Must Be Completed Prior to Construction

<u>Activity</u>

<u>Time</u>

Preparation by SNS and contractor

DOE Review

Approval (stipulated completion of chemical consequence analysis)

Chemical hazard and fire accident analysis

DOE Review of Chem/fire analysis

January/February 2000

June – December 1999

February 2000

May – August 2000

October 2000 (ongoing, approval expected soon)

Chemical Consequences Are More Limiting than Radiological

- WORKER, accident limit:
 - Toxicity limit for infrequent accidents is 10 mg/m³ for 0.5-hours (IDLH -- "immediately dangerous to life and health")
 - Rad dose due to 10 mg/m³ for 0.5-hours (long lived Hg isotopes) = 4 rem (within 10 CFR 835 annual limit)
- PUBLIC: accident limit does not exist (SNS plans to propose 2 mg/m³ for "ERPG-2" limit)
 - Toxicity "limit" is 2 mg/m³ for 1-hour exposure (proposed ERPG-2)
 - Rad dose due to 2 mg/m³ for 1-hour = 1.6 rem [DOE's "evaluation guideline" (max limit) is 25-rem for public exposure to infrequent accidents]
- Bottom line: For accidents, the toxicity consideration is more limiting by factor of approximately 10.

The Emergency Response Planning Guideline (ERPG) Values

 The Emergency Response Planning Guideline-2 (ERPG-2) value is the maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to 1 hr without experiencing or developing irreversible or other serious health effects or symptoms which could impair an individual's ability to take protective action.

Comments on Using a Hg Target for Neutrino Factory

- Must carefully define requirements, and a Hg target conceptual design that meets these requirements
 - Until this is done, efforts are likely to flounder and could be irrelevant in the end
 - Derive feasibility issues
 - Define R&D program that addresses critical feasibility issues
- Feasibility issues:
 - Hg jet formation and stability, especially in high B field, will be critical issue
 - How to re-establish jet before next beam pulse
 - Likely that others will result from conceptual design process
- Using mercury could significantly complicate the Environmental Impact Statement and Safety Analysis
 - Neutrino factory/muon collider will likely be a Nuclear Facility
- SNS facilities, capabilities, and expertise are available for the Neutrino Factory and Muon Collider Collaboration