Permanent Magnet Diploes and Quadrupoles for FFAGs

Jinfang Liu and Peter Dent

Electron Energy Corporation

924 Links Ave, Landisville PA 17538

Phone: 717-898-2294 Fax: 717-898-0660
(1) Permanent Magnet Overview
(2) Some Design Considerations
(3) Radiation Effect
(4) Permanent Magnet Dipoles
(5) Permanent Magnet Mangles
(6) Permanent Magnet Quadrupoles
(7) Summary
Overview

(BH)$_{\text{max}}$ versus Maximum Operating Temperature
Permanent Magnet Selection

Some factors to consider:

(1) Magnetic performance
(2) Corrosion resistance
(3) Thermal stability
(4) Radiation resistance
(5) Magnetization direction
(6) Manufacturability
(7) Cost
Typical magnetic properties, in terms of energy product, of selected commercial magnets:

- Sintered Nd-Fe-B magnets: up to 50 MGOe
- Sintered Sm-Co magnets: up to 32 MGOe
- Isotropic bonded Nd-Fe-B magnets: up to 10 MGOe
- Sintered ceramic magnets: up to 4 MGOe
- Cast Alnico magnets: up to 9 MGOe
Rare Earth Magnets

Maximum operating temperature of sintered magnets

<table>
<thead>
<tr>
<th>Magnets</th>
<th>Maximum Operating Temp.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdFeB with $iH_c = 12$ kOe</td>
<td>80°C</td>
</tr>
<tr>
<td>NdFeB with $iH_c = 17$ kOe</td>
<td>120°C</td>
</tr>
<tr>
<td>NdFeB with $iH_c = 20$ kOe</td>
<td>150°C</td>
</tr>
<tr>
<td>NdFeB with $iH_c = 25$ kOe</td>
<td>180°C</td>
</tr>
<tr>
<td>Conventional SmCo magnets</td>
<td>300°C</td>
</tr>
<tr>
<td>EEC24-T400 magnets (patented & available)</td>
<td>400°C</td>
</tr>
<tr>
<td>EEC20-T500 magnets (patented & available)</td>
<td>500°C</td>
</tr>
<tr>
<td>EEC16-T550 magnets (patented & available)</td>
<td>550°C</td>
</tr>
</tbody>
</table>
Rare Earth Magnets -- Properties vs. Temperature

(BH)_{max} Versus Maximum Operating Temperature

NdFeB
SmCo

Maximum Operating Temp. (°C)

9/19/2005
Long-term Thermal Stability of SmCo Magnets at 300°C in Air

Magnet Dimensions: 1 cm OD x 1 cm THK

- T550C-16MGOe w/coating
- T550C-16MGOe
- T500C-20MGOe
- T400C-24MGOe
- T330C-27MGOe
- T250C-31MGOe

Magnetic Irreversible Losses (%)

Time at 300°C (Hours)
High temperature magnets

- DoD initiated the More Electric Aircraft program, which requires magnets with maximum operating temperature more than 400°C
- Funded by the Department of Defense, a series of sintered SmCo 2:17 magnets were developed at EEC with maximum operating temperature as high as 550°C
- These patented SmCo UHT magnets were introduced to the industry in 1999.
SmCo Rare Earth Magnets

<table>
<thead>
<tr>
<th>PM Grades</th>
<th>B_r (kG)</th>
<th>$(BH)_{max}$ (MGOe)</th>
<th>Max. operating temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEC2:17-31</td>
<td>11.6</td>
<td>31</td>
<td>250</td>
</tr>
<tr>
<td>EEC2:17-27</td>
<td>10.8</td>
<td>27</td>
<td>300</td>
</tr>
<tr>
<td>EEC24-T400</td>
<td>10.2</td>
<td>24.5</td>
<td>400</td>
</tr>
<tr>
<td>EEC20-T500</td>
<td>9.3</td>
<td>21</td>
<td>500</td>
</tr>
<tr>
<td>EEC16-T550</td>
<td>8.6</td>
<td>17</td>
<td>550</td>
</tr>
</tbody>
</table>
Nd-Fe-B sintered magnets

Key features:
- Highest \((BH)_{\text{max}}\) available (up to 50 MGOe)
- Less expensive than Sm-Co magnets
- Corrosion resistance is not good
- Special coating is required
- Maximum operating temperature is very low compared to SmCo magnets
Nd-Fe-B Type Rare Earth Magnets

<table>
<thead>
<tr>
<th>PM Grades</th>
<th>B_r (kG)</th>
<th>$(BH)_{\text{max}}$ (MGOe)</th>
<th>Max. operating temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N50</td>
<td>14-14.5</td>
<td>48-51</td>
<td>70</td>
</tr>
<tr>
<td>N45</td>
<td>13.2-13.8</td>
<td>43-46</td>
<td>70</td>
</tr>
<tr>
<td>N45M</td>
<td>13.2-13.6</td>
<td>43-46</td>
<td>100</td>
</tr>
<tr>
<td>N42SH</td>
<td>12.8-13.2</td>
<td>40-43</td>
<td>120</td>
</tr>
<tr>
<td>N33UH</td>
<td>11.3-11.7</td>
<td>31-34</td>
<td>180</td>
</tr>
</tbody>
</table>
Some Design Considerations

Permeance Coefficient P_c

In the magnetic circuit, a magnet will operate at a specific point on its extrinsic demagnetization curve:

$$P_c = \frac{B_d}{H_d}$$

- Also known as load line or operating point
- It is related to the dimensions of the magnets and the associated magnetic circuit
Why straight-line demagnetization curves?

Application with load line #1: Both magnets are okay to use
Application with load line #2: Only magnet #1 is suitable
The effects of radiation on permanent magnets was studied at EEC under a NASA STTR Contract

- All Samples have a L/D ratio of 1.25
- Permanent Magnets Studied:
 - EEC T500 and T300 SmCo 2:17 magnets
 - Nd-Fe-B Magnets
- Radiation Source: Ohio State University Research Reactor

OSU Reactor

Samples in quartz tubes
Permanent Magnets and Radiation Effect

9/19/2005
Working Point and Radiation Effect

Radiation Effect

The major radiation damage is caused by radiation-induced thermal spikes

The dominant factor for radiation tolerance is thermal stability, which is related to the following factors:

1. Curie temperature of permanent magnets
2. Working point of permanent magnet in the system
3. Intrinsic coercivity
Permanent Magnet Dipoles

\[
B_g = \frac{B_m A_m}{k_1 A_g}
\]

- \(A_m\) = Magnet area perpendicular to the direction of magnetization;
- \(B_m\) = Flux density of the magnet corresponding to the operating point of the demagnetization curve;
- \(B_g\) = Flux density desired in the air gap;
- \(A_g\) = Cross section area of the air gap perpendicular to the flux lines.

The Air Gap Flux Density Is A Lot Lower Than The \(B_r\) Of The Permanent Magnets
Permanent Magnet Dipoles

Halbach PM Dipole Structures:

\[B_g = B_r \ln(\text{OD/ID}) \]

There is no upper limit for air gap flux density in Halbach dipole structures according to above equation. But in reality it would be limited by:

1. The realistic size
2. The demagnetization effect
Halbach Dipole Example

Flux Density Map

Vector Map
Magnetic Mangles

0° Position

Vector Plot

9/19/2005
Magnetic Mangles

45° Position

Vector Plot

9/19/2005
Magnetic Mangles

90° Position

Vector Plot

5.0000e-01
4.5000e-01
4.0000e-01
3.5000e-01
3.0000e-01
2.5000e-01
2.0000e-01
1.5000e-01
1.0000e-01
5.0000e-02
0.0000e+00
Magnetic Mangles

135° Position

Vector Plot
- 5.0000e-01
- 4.5000e-01
- 4.0000e-01
- 3.5000e-01
- 3.0000e-01
- 2.5000e-01
- 2.0000e-01
- 1.5000e-01
- 1.0000e-01
- 5.0000e-02
- 0.0000e+00

9/19/2005
Combination of magnetic mangles and Habach structures can make the air gap flux density adjustable to some degree
4 Tesla PM prototype Halbach cylinder was made in Japan.*

EEC has produced many Halbach structures for a variety of applications.

Sintered SmCo or high H_{ci} NdFeB magnets are good choices

A Example of Halbach PM Quadrupole

B[T]

- 1.0000e+00
- 9.0000e-01
- 8.0000e-01
- 7.0000e-01
- 6.0000e-01
- 5.0000e-01
- 4.0000e-01
- 3.0000e-01
- 2.0000e-01
- 1.0000e-01
- 0.0000e+00

9/19/2005
Adjustable Magnetic Quadrupoles

Adjustable magnetic quadrupoles as reported by Fermi lab and SLAC*:

- Diametrically magnetized SmCo 2:17 tuning rods
- Tuning rods rotation changes the strength of field gradient

* J. T. Volk et al, PAC2001, p217
Summary

- Permanent magnet dipoles and quadrupoles can have high air gap flux density if designed with Halbach principles.
- Innovative designs can make the air gap flux density adjustable.
- Permanent magnet selection might include trade-offs between cost and performance.
- SmCo magnets are far superior to NdFeB magnets with respect to radiation resistance.
Contact Information

Jinfang Liu, Director of Technology
Peter Dent, Director of Sales and Marketing
Michael Walmer, President

Electron Energy Corporation
924 Links Ave.
Landisville, PA 17538
(717) 898-2294 Phone
(717) 898-0660 Fax
eec@electronenergy.com
www.electronenergy.com