

Neutrino Factory R&D

in the U.S.

Michael S. Zisman CENTER FOR BEAM PHYSICS

NuFact03-Columbia June 5, 2003

- Introduction
- R&D program progress
- MICE activities
- R&D plans
- Summary

- An R&D program aimed at the production, acceleration and storage of intense muon beams is under way in the U.S.
 - under auspices of U.S. Neutrino Factory and Muon Collider Collaboration (MC)
 - support comes from DOE, NSF, State of Illinois, and U.S.-Japan
- Enhanced considerably by corresponding programs in Europe and Japan
- Attacking R&D problems of intense muon beams on a broad front
- \cdot In this talk I will describe the activities and plans of the MC
- Program has been (negatively) impacted by funding cuts in the past year
 - but we continue to make good technical progress

- Targetry
 - initial beam tests of target (C rod and Hg jet) completed at AGS
 - no running in FY03 and likely FY04 as well, a major impediment
 - C sublimation tests ongoing at ORNL (Haines, Gabriel)
 - initial results in vacuum indicate 1 month lifetime at 1.2 MW
 - He-atmosphere tests will follow
 - developing bunch-merging technique to increase proton intensity
 - earlier tests done with 4 Tp/pulse (design value 16 Tp/pulse)
 - open questions for Hg jet: injection into $\approx\!20$ T field and nonlinear jet dynamics at full proton intensity
 - designing test magnet to permit experimental study of its effects
 - designing Hg jet system capable of required 20-30 m/s velocity
 - continuing simulation effort to predict and interpret effects

- Radiation testing of candidate solid-target materials (Super-Invar and Inconel) carried out at BNL (Kirk, Simos) with 200 MeV p beam
 - looked at both CTE and tensile strength changes
 - big changes in Super-Invar CTE with dose, less with Inconel

• yield strength increases but material gets more brittle

- Bunch merging ($h = 12 \rightarrow h = 6$) at AGS gave extracted proton bunch of 10 Tp (desire 16 Tp)
 - technique needs development, but is clearly workable

R&D Program Progress

 Engineering study of 5–15 T magnet for E951 at BNL completed (Kirk, Titus)

Stage	Field (T)	Power (MW)	Coolant	Temperature (K)
1	5	0.6	N ₂	84
2	10	2.2	N_2	74
3	15	2.2	H_2	30
<mark>3a</mark>	<mark>15</mark>	<mark>4.5</mark>	N_2	<mark>70</mark>

- · Cooling
 - includes hardware R&D on rf cavities, absorbers, solenoids
 - \circ cooling channel cavities immersed in solenoid field \Rightarrow must be NC
 - rf work to date done at 805 MHz; 201 MHz cavity designed now
 - issue: limits to gradient (breakdown; dark currents)
 - absorber work going on in Illinois (ICAR supported) and Japan (U.S.-Japan funding)
 - development and testing of large, thin windows
 - consideration of hydrogen safety implications is well along
 - proximity of LH₂ to "ignition source" requires additional containment windows seen by beam
 - solutions being developed initially in the context of MICE
 - solenoid work is aimed mainly at cost and reliability issues

- Present tests use pillbox cavity with replaceable windows (or grids) (Li)
 - cavity fits in bore of Lab G solenoid

- Pillbox cavity reached 34 MV/m in Lab G with no solenoid field (Moretti, Norem, Li, Rimmer, Torun, Gruber)
 - with solenoid performance worse (18 MV/m), radiation levels higher
 - field seemingly enhances likelihood of physical damage
 - but, some evidence for healing by reprocessing without field
- Cavity disassembled in December to inspect windows, internal surfaces
 - some pitting of window seen, with copper "dust" at bottom of cavity

Copper window after using solenoid

- TiN-coated Be windows were next installed and tested
 - no conditioning problems seen without magnetic field
 - \Rightarrow parallel plate geometry does not cause big problems
- Found no damage to Be surface, but sputtered Cu is present
 - suggests need to focus more on copper body than on windows
- We will explore coatings that may help

Be windows with sputtered copper

• Even with magnetic field present, background rates for Be are lower than for Cu under comparable conditions

• Workshop on High-Gradient RF Cavities to be held at ANL, October 7–9, 2003

http://www.hep.anl.gov/rf/

— contact: Jim Norem

 201 MHz rf cavity design nearly complete (Rimmer, Li, Ladran, Virostek)

- options for either Be windows or grids are included
- fabrication began this year; completion in about 1 year

- Ideal cavity termination would be perfectly conducting and transparent to muon beam, and would not affect cavity frequency
 - initial concept was to use prestressed flat Be foils
 - even at 805 MHz, it was difficult to maintain flatness when window is heated by rf
 - frame had to be very thick, making windows costly
 - new concept (Virostek, Lau, Li, Rimmer) uses pre-curved windows that bow predictably
 - with proper design, stresses remain quite low as the foil heats

- Absorber group has developed strong, thin windows (Cummings, Kaplan)
 - windows as thin as 125 μ m machined from solid Al (Summers)
 - original design destruction tested at NIU (performance okay)
 - $_{o}$ 125 μm window broke at 44 psi (3 atm), 340 μm window at 120 psi (8 atm)
 - stronger (\Rightarrow thinner) design (Lau, Black) to be tested next
 - developed photogrammetry technique to characterize window behavior

<u>R&D Program Progress</u>

- To test hardware, building MUCOOL Test Area at Fermilab (Popovic)
 - absorber, solenoid, and 201 MHz rf cavity will be integrated here

Original area

Stage 2 construction area

What it will look like when completed

R&D Program Progress

- Work on 201 MHz scrf cavity for the acceleration system made good progress (Hartill, Padamsee; NSF)
 - focusing on achieving gradient, Q, mechanical stability
 - o reached 11 MV/m after re-cleaning cavity
 - low-power $Q = 10^{10}$
 - still need to develop designs for ancillary items (input coupler, HOM coupler, tuner) based on existing experience, e.g., KEKB

- Simulations
 - separate group to focus on emittance exchange (Raja)
 - ring coolers (Balbekov, Palmer) important due to potentially significant cost reduction (Neutrino Factory and/or Collider)
 - 6D cooling looks promising; injection is an issue

- Looking at alternative acceleration schemes
 - RLA with FFAG arcs (Berg, Johnstone, Keil, Sessler, Trbojevic)

very rapid cycling booster (Summers)

Grain-oriented Si steel

- Preparations for Study III
 - looking at improved approaches to make cost-optimized facility design
 - improved bunching and phase rotation (Neuffer)
 - cooling rings (Balbekov, Palmer, Raja)
 - FFAG acceleration (Berg, Keil, Sessler) or fast cycling booster (Summers)
- Hope is to make this a "world" study, sponsored by RAL
 - participants would come from EU, Japan, and U.S.
- This will be discussed in WG3 on Tuesday, June 10 at 16:00

- Motivation for MICE
 - straightforward physics, but not experimentally demonstrated
 - prudence dictates demonstration of key principle for expensive facility, O(\$1B)
- Why should we move forward expeditiously?
 - we have a motivated collaboration, an enthusiastic host lab (RAL), and a solid experiment design \Rightarrow the time to begin is now
 - experiment forces us to deal with operational and cost issues early
- U.S. groups anticipate providing substantial effort for (international) MICE
 - rf cavities, coupling coils, part of tracker, software development, experiment simulations
 - U.S. team has already submitted funding request to NSF for \$24M

- **Basic ingredients of MICE experiment:**
- absorbers to give energy loss (LH₂ capable of handling 100–300 W)
- <mark>rf cavities</mark> to restore lost energy (up to 17 MV/m at 201 MHz)
- solenoid magnets to contain the muons (up to 5 T)
- diffuser to create large emittance sample
- upstream diagnostics section to define initial emittance
- downstream diagnostics section for final emittance and particle ID

- MICE status
 - proposal submitted in January 2003
 - international review held February 17 (A. Astbury, chairperson)
 - "homework" questions completed in mid-April
 - expect committee to make recommendation this summer
 - we anticipate that they will "strongly recommend" approval of the project

- Targetry
 - fabricate 15 T magnet and test with AGS (or other) beam
- · Cooling
 - fabricate and test 201 MHz high-gradient cavity (17 MV/m)
 - fabricate and test LH₂ absorbers (first convection-cooled, later externally cooled type) with all safety aspects
- Acceleration
 - develop full prototype of 201 MHz SCRF cavity module
- Ring coolers
 - develop engineered concept of complete ring
- MICE
 - design and fabricate our portion of required components
- Study III participation as part of world team

- U.S. muon beam program continues to make excellent technical progress on all fronts
- Interaction with colleagues worldwide serves as "model" for working together on major international projects
- U.S. team part of strong international effort for MICE
 - international review held February 17
 - decision expected by this summer
- We are developing components that serve as prototypes for MICE
- Budget problems in U.S. and elsewhere causing significant problem
 - restoring adequate funding levels in future years is critical to maintaining a healthy international muon beam R&D program
 - we continue to work on this
 - ... and so should everybody else here!