Balbekov (Tetra) Ring

Simulation Results in COSY

K. Makino
University of Illinois at Urbana-Champaign

Collaboration with:
M. Berz, C.O. Maidana (Michigan State University)

Supported by the Illinois Consortium for Accelerator Research,
the U.S. Department of Energy,
the NSF and the Alfred P. Sloan Foundation

See: ICAP 2002 Proceedings
Muon Beam Ring Cooler by V. Balbekov
(Pictures: Courtesy of Balbekov)

Figure 1: Layout and parameters of the solenoid based ring cooler.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>36.963 m</td>
</tr>
<tr>
<td>Nominal energy at short SS and bends</td>
<td>250 MeV</td>
</tr>
<tr>
<td>Bending field</td>
<td>1.453 T</td>
</tr>
<tr>
<td>Norm. field gradient</td>
<td>0.5</td>
</tr>
<tr>
<td>Max. solenoid field</td>
<td>5.155 T</td>
</tr>
<tr>
<td>RF frequency</td>
<td>205.69 MHz</td>
</tr>
<tr>
<td>Accelerating gradient</td>
<td>15 MeV/m</td>
</tr>
<tr>
<td>LH$_2$ absorber length</td>
<td>128 cm</td>
</tr>
<tr>
<td>LiH wedge absorber</td>
<td>14 cm</td>
</tr>
<tr>
<td>Grad. of energy loss</td>
<td>0.75 MeV/cm</td>
</tr>
</tbody>
</table>
Map Method

- The transfer map is the flow of the system ODE.
 \[\vec{z}_f = \mathcal{M}(\vec{z}_i, \delta) \]

- The Differential Algebraic (DA) method allows the computation and manipulation of maps efficiently and elegantly.

- For a repetitive system, only one cell has to be computed. Thus, much faster than tracking codes.

- The Normal Form method can be used for analysis of nonlinear behavior.
The Particle Optical Equations of Motion

\[x' = a \cdot (1 + hx) \cdot \frac{p_0}{p_z} \]

\[y' = b \cdot (1 + hx) \cdot \frac{p_0}{p_z} \]

\[l' = (1 + \delta_m) \cdot (1 + hx) \cdot \frac{1 + \eta}{1 + \eta_0} \cdot \frac{p_0}{p_z} \]

\[a' = \left((1 + \delta_m) \cdot \frac{1 + \eta}{1 + \eta_0} \cdot \frac{p_0}{p_z} \cdot \frac{E_x}{\chi E_0} - \frac{B_y}{\chi M_0} + b \cdot \frac{p_0}{p_z} \cdot \frac{B_z}{\chi M_0} \right) \]

\[b' = \left((1 + \delta_m) \cdot \frac{1 + \eta}{1 + \eta_0} \cdot \frac{p_0}{p_z} \cdot \frac{E_y}{\chi E_0} + \frac{B_x}{\chi M_0} - a \cdot \frac{p_0}{p_z} \cdot \frac{B_z}{\chi M_0} \right) \]

\[(1 + hx) \cdot (1 + \delta_z) \]

\[\chi_{E0} = \frac{p_0 \cdot v_0}{z_0 e}, \quad \chi_{M0} = \frac{p_0}{z_0 e} \]

\[\eta = \left(\frac{K_0 \cdot (1 + \delta_k) - z_0 \cdot e \cdot (1 + \delta_z) \cdot V(x, y, s)}{m_0 c^2 \cdot (1 + \delta_m)} \right) \]

\[\frac{p_z}{p_0} = \sqrt{(1 + \delta_m)^2 \cdot \frac{\eta(2 + \eta)}{\eta_0(2 + \eta_0)} - a^2 - b^2} \]

\[a = \frac{p_x}{p_0} \quad b = \frac{p_y}{p_0} \]
DA Fixed Point Theorem

Differential Algebra \mathcal{D}_v^D : in v variables up to order n.

Definition (Depth) To any element $[f] \in \mathcal{D}_v^D$ we define the depth

$$\lambda([f]) = \begin{cases}
\text{Order of first nonvanishing derivative of } f & \text{if } [f] \neq 0 \\
n + 1 & \text{if } [f] = 0
\end{cases}.$$

Definition (DA Contracting Operator) Let \mathcal{O} be an operator on the set $M \subset \mathcal{D}_v^m$. \mathcal{O} is contracting on M if for any $\bar{a}, \bar{b} \in M$ with $\bar{a} \neq \bar{b}$,

$$\lambda(\mathcal{O}(\bar{a}) - \mathcal{O}(\bar{b})) > \lambda(\bar{a} - \bar{b}).$$

Remark: Practically this means that after application of \mathcal{O}, the derivatives in \bar{a} and \bar{b} agree to a higher order than before application of \mathcal{O}.

Example: The antiderivation ∂_k^{-1}.

Theorem (DA Fixed Point Theorem) Let \mathcal{O} be a contracting operator on $M \subset \mathcal{D}_v^D$ that maps M into M. Then \mathcal{O} has a unique fixed point $\bar{a} \in M$ that satisfies the fixed point problem

$$\bar{a} = \mathcal{O}(\bar{a}).$$

Moreover, let a_0 be any element in M. Then the sequence

$$a_k = \mathcal{O}(a_{k-1}) \text{ for } k = 1, 2, \ldots$$

converges in finitely many steps, at most $(n + 1)$ steps, to the fixed point \bar{a}.
DA Fixed Point PDE Solvers

The DA fixed point theorem allows to solve PDEs iteratively in finitely many steps by rephrasing them in terms of a fixed point problem.

Consider the rather general PDE

\[a_1 \frac{\partial}{\partial x} \left(a_2 \frac{\partial}{\partial x} V \right) + b_1 \frac{\partial}{\partial y} \left(b_2 \frac{\partial}{\partial y} V \right) + c_1 \frac{\partial}{\partial z} \left(c_2 \frac{\partial}{\partial z} V \right) = 0, \]

where \(a_i, b_i, c_i \) are functions of \(x, y, z \).

The PDE is re-written as

\[
V = V|_{y=0} + \int_0^y \left. \frac{1}{b_2} \left(b_2 \frac{\partial V}{\partial y} \right) \right|_{y=0} dy - \int_0^y \int_0^y \left(\frac{a_1}{b_1} \frac{\partial}{\partial x} \left(a_2 \frac{\partial V}{\partial x} \right) + \frac{c_1}{b_1} \frac{\partial}{\partial z} \left(c_2 \frac{\partial V}{\partial z} \right) \right) dy dy,
\]

in fixed point form.

Assume the derivatives of \(V \) and \(\partial V/\partial y \) with respect to \(x \) and \(z \) are known in the plane \(y = 0 \). Then the right hand side is contracting with respect to \(y \), and the various orders in \(y \) can be iteratively calculated by mere iteration.
Analytical Field on Axis for a thick Solenoid

\[B_s(s) = \frac{\mu_0 I_n}{2(R_2-R_1)} \left\{ s \log \left(\frac{R_2+\sqrt{R_2^2+s^2}}{R_1+\sqrt{R_1^2+s^2}} \right) - (s-l) \log \left(\frac{R_2+\sqrt{R_2^2+(s-l)^2}}{R_1+\sqrt{R_1^2+(s-l)^2}} \right) \right\} \]

\[V(s) = \frac{\mu_0 I_n}{4(R_2-R_1)} \left\{ s^2 \log \left(\frac{R_2+\sqrt{R_2^2+s^2}}{R_1+\sqrt{R_1^2+s^2}} \right) - (s-l)^2 \log \left(\frac{R_2+\sqrt{R_2^2+(s-l)^2}}{R_1+\sqrt{R_1^2+(s-l)^2}} \right) \right\} + R_2\sqrt{R_2^2+s^2} - R_1\sqrt{R_1^2+s^2} - R_2\sqrt{R_2^2+(s-l)^2} + R_1\sqrt{R_1^2+(s-l)^2} \]
Balbekov Ring: Short Section

Axial Field
1) Transfer Map with **Kick** Approximation in the **Asymptotic** Fields

<table>
<thead>
<tr>
<th>Transfer Value</th>
<th>1.015304</th>
<th>0.3060451E-11</th>
<th>0.2022730E-03</th>
<th>0.5845774E-04</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.968705</td>
<td>1.388108</td>
<td>1.284507</td>
<td>1.099203</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>-12.74829</td>
<td>-1.191336</td>
<td>1.970436</td>
<td>4.189763</td>
<td>4100</td>
<td></td>
</tr>
<tr>
<td>-22.23560</td>
<td>-5.817135</td>
<td>-0.2996768</td>
<td>5.761626</td>
<td>3200</td>
<td></td>
</tr>
</tbody>
</table>

* The consistency was checked with linear matrices supplied by Balbekov.

2) Transfer Map with **Kick** Approximation in the **Realistic** Fields

<table>
<thead>
<tr>
<th>Transfer Value</th>
<th>0.3762572E-01</th>
<th>0.1324007E-03</th>
<th>0.9123892E-05</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.092008</td>
<td>0.3762572E-01</td>
<td>0.1216993E-10</td>
<td>0.1324008E-03</td>
<td>0100</td>
</tr>
<tr>
<td>-0.1324007E-03</td>
<td>-0.9123892E-05</td>
<td>0.3762572E-01</td>
<td>-0.9144481</td>
<td>0010</td>
</tr>
<tr>
<td>-0.1216993E-10</td>
<td>-0.1324008E-03</td>
<td>1.092008</td>
<td>0.3762572E-01</td>
<td>0001</td>
</tr>
</tbody>
</table>

* Omitted ...

<table>
<thead>
<tr>
<th>Transfer Value</th>
<th>2.194351</th>
<th>1.925709</th>
<th>2.734348</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.100432</td>
<td>1.247951</td>
<td>1.790312</td>
<td>4100</td>
<td></td>
</tr>
<tr>
<td>9.421870</td>
<td>-4.741542</td>
<td>-0.5027561</td>
<td>3200</td>
<td></td>
</tr>
</tbody>
</table>

3) Transfer Map Computed with **Fringe** Fields by **COSY**

<table>
<thead>
<tr>
<th>Transfer Value</th>
<th>0.9113584E-02</th>
<th>0.9101484</th>
<th>0.2707143E-04</th>
<th>0.8741688E-06</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.098631</td>
<td>0.9113584E-02</td>
<td>0.1597370E-05</td>
<td>0.2707097E-04</td>
<td>0100</td>
<td></td>
</tr>
<tr>
<td>-0.2707143E-04</td>
<td>0.8741688E-06</td>
<td>0.9113584E-02</td>
<td>-0.9101484</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>0.1597370E-05</td>
<td>-0.2707097E-04</td>
<td>1.098631</td>
<td>0.9113584E-02</td>
<td>0001</td>
<td></td>
</tr>
</tbody>
</table>

* Omitted ...

<table>
<thead>
<tr>
<th>Transfer Value</th>
<th>1.095873</th>
<th>0.6296333</th>
<th>1.603693</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.302134</td>
<td>-0.2037065</td>
<td>0.6387705</td>
<td>4100</td>
<td></td>
</tr>
<tr>
<td>3.442199</td>
<td>-3.197581</td>
<td>-1.227331</td>
<td>3200</td>
<td></td>
</tr>
</tbody>
</table>
Muon Beam Ring Cooler by V. Balbekov
(Pictures: Courtesy of Balbekov)

Long Section

198 cm 272 cm 198 cm
10.5 cm R 81 cm
3.5 cm

668 cm

J = 43.79 A/mm²

Axial Field with Infinitely Extended End Coils
Balbekov Ring: Long Section

Axial Field

Bz (T)

s (m)
Balbekov's Kick Approximation V.S. COSY Computation
Long Section (Length 6.68m, Inner radius 81cm, Coil thickness 3.5cm to 10.5cm)

Linear Transfer Map with Balbekov's Kick Approximation (Full Aperture)

-0.1563521E-02 0.4816040E-01 -0.3071766E-01 0.9461698 1000
-0.5360646E-01 -0.1563561E-02 -1.053164 -0.3071766E-01 0100
0.3071766E-01 -0.9461698 -0.1563521E-02 0.4816040E-01 0010
1.053164 0.3071766E-01 -0.5360646E-01 -0.1563561E-02 0001

Linear Transfer Map Computed with Fringe Fields by COSY (Full Aperture)

0.2349601 0.7548866 0.8860107E-01 0.2030465 1000
-1.157433 0.2477034 -0.3113219 0.4122390E-01 0100
-0.8860107E-01 -0.2030465 0.2349601 0.7548866 0010
0.3113219 -0.4122390E-01 -1.157433 0.2477034 0001

Difference between the Kick Approximation and COSY with Smaller Aperture
Traces of 1/2 Ring with Various Solenoid Models (Bending: Hard Edge Model, B=1, angle=45°)

Correct Fringe Fields

Hard Edge, Finely Long

Hard Edge, Infinitely Long
7-th order, 100 1/2 turns, CET=250 IC FR 2 Expo

Defining:

Ground: Hard Edge (Infini-Tip Long)

O.100

O.200
Bending: Hard Edge

Second: Hard Edge (Infinity Long)

7th order, 100 1/2 turns, Bext=49 IX PR 0 EXPO
Bending: with Fringe Fields
Solenoid: Hand Edge (Infinity Long)
7-th order, 100 1/2 turns, Extc=249, Ic FR 2 EXPO
Conclusion and Outlook

- There are strong resonance structures with/without FF.
- The FF effects have a dramatic impact on performance.

Next studies....

- What is the impact of damping on the performance.